Direct Image Reconstruction of Lissajous-Type Magnetic Particle Imaging Data Using Chebyshev-Based Matrix Compression

被引:21
作者
Schmiester, Leonard [1 ]
Moeddel, Martin [1 ]
Erb, Wolfgang [2 ]
Knopp, Tobias [1 ]
机构
[1] Univ Med Ctr Hamburg Eppendorf, Inst Biomed Imaging, D-22529 Hamburg, Germany
[2] Univ Hawaii Manoa, Dept Math, Honolulu, HI 96822 USA
关键词
Biomedical imaging; image reconstruction; data compression; MPI;
D O I
10.1109/TCI.2017.2706058
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Image reconstruction in magnetic particle imaging (MPI) is done using an algebraic approach for Lissajous-type measurement sequences. By solving a large linear system of equations, the spatial distribution of magnetic nanoparticles can be determined. Despite the use of iterative solvers that converge rapidly, the size of the MPI system matrix leads to reconstruction times that are typically much longer than the actual data acquisition time. For this reason, matrix compression techniques have been introduced that transform the MPI system matrix into a sparse domain and then utilize this sparsity for accelerated reconstruction. Within this work, we investigate the Chebyshev transformation for matrix compression and show that it can provide better reconstruction results for high compression rates than the commonly applied Cosine transformation. By reducing the number of coefficients per matrix row to one, it is even possible to derive a direct reconstruction method that obviates the usage of iterative solvers.
引用
收藏
页码:671 / 681
页数:11
相关论文
共 42 条
[1]  
[Anonymous], 1937, Bulletin de Academie Polonaise des Sciences et Lettres, DOI DOI 10.1109/TMI.2017.2666740
[2]   Julia: A Fresh Approach to Numerical Computing [J].
Bezanson, Jeff ;
Edelman, Alan ;
Karpinski, Stefan ;
Shah, Viral B. .
SIAM REVIEW, 2017, 59 (01) :65-98
[3]   DIGITAL SUBTRACTION ANGIOGRAPHY [J].
BRODY, WR .
IEEE TRANSACTIONS ON NUCLEAR SCIENCE, 1982, 29 (03) :1176-1180
[4]   Quantitative "Hot-Spot" Imaging of Transplanted Stem Cells Using Superparamagnetic Tracers and Magnetic Particle Imaging [J].
Bulte, Jeff W. M. ;
Walczak, Piotr ;
Janowski, Miroslaw ;
Krishnan, Kannan M. ;
Arami, Hamed ;
Halkola, Aleksi ;
Gleich, Bernhard ;
Rahmer, Juergen .
TOMOGRAPHY, 2015, 1 (02) :91-97
[5]   Gadolinium(III) chelates as MRI contrast agents: Structure, dynamics, and applications [J].
Caravan, P ;
Ellison, JJ ;
McMurry, TJ ;
Lauffer, RB .
CHEMICAL REVIEWS, 1999, 99 (09) :2293-2352
[6]   Limits of detection of SPIO at 3.0 T using T2* relaxometry [J].
Dahnke, H ;
Schaeffter, T .
MAGNETIC RESONANCE IN MEDICINE, 2005, 53 (05) :1202-1206
[7]   Bivariate Lagrange interpolation at the node points of non-degenerate Lissajous curves [J].
Erb, Wolfgang ;
Kaethner, Christian ;
Ahlborg, Mandy ;
Buzug, Thorsten M. .
NUMERISCHE MATHEMATIK, 2016, 133 (04) :685-705
[8]   System Characterization of a Highly Integrated Preclinical Hybrid MPI-MRI Scanner [J].
Franke, Jochen ;
Heinen, Ulrich ;
Lehr, Heinrich ;
Weber, Alexander ;
Jaspard, Frederic ;
Ruhm, Wolfgang ;
Heidenreich, Michael ;
Schulz, Volkmar .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2016, 35 (09) :1993-2004
[9]   Tomographic imaging using the nonlinear response of magnetic particles [J].
Gleich, B ;
Weizenecker, R .
NATURE, 2005, 435 (7046) :1214-1217
[10]   Multidimensional X-Space Magnetic Particle Imaging [J].
Goodwill, Patrick W. ;
Conolly, Steven M. .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2011, 30 (09) :1581-1590