Optimized Modulation and Dynamic Control of a Three-Phase Dual Active Bridge Converter With Variable Duty Cycles

被引:51
作者
Huang, Jun [1 ]
Li, Zhuoqiang [2 ]
Shi, Ling [2 ]
Wang, Yue [3 ]
Zhu, Jinda [1 ]
机构
[1] Nari Grp Corp, State Grid Elect Power Res Inst, Nanjing 211000, Jiangsu, Peoples R China
[2] Xi An Jiao Tong Univ, Xian 710049, Shaanxi, Peoples R China
[3] Xi An Jiao Tong Univ, Sch Elect Engn, Xian 710049, Shaanxi, Peoples R China
关键词
Duty cycle control (DCC); fast transient current control (FTCC); optimized modulation strategy; soft switching; three-phase dual active bridge (3p-DAB); DC-DC CONVERTER; POWER-CONVERSION; STRATEGY;
D O I
10.1109/TPEL.2018.2842021
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The three-phase dual active bridge (3p-DAB) converter is a promising topology for high power dc-dc conversion due to advantages of bidirectional power flow, inherent soft-switching capability, and reduced filter volume. This paper presents comprehensive analysis of the duty cycle control (DCC) for optimizing the performance of the 3p-DAB. Based on DCC, an optimized modulation strategy is proposed to minimize the conduction losses of the 3p-DAB in the whole load range. The proposed modulation strategy extends the soft-switching range of the 3p-DAB with large voltage variations simultaneously. It is established through loss analysis that the proposed modulation strategy boosts the efficiency of the 3p-DAB, especially at low loads. When the duty cycles change fast as a result of the abruptly changed transmission power, the transformer currents can become unbalanced, leading to the magnetic bias and oscillations in dc currents. This paper further proposes a fast transient current control (FTCC) method for the 3p-DAB with variable duty cycles. The FTCC enables the converter to transfer from one steady state to another within about one-third switching period, hence balancing the transformer currents rapidly and avoiding oscillations in dc currents. Finally, experimental results verify the outstanding performance of the proposed modulation strategy and FTCC method.
引用
收藏
页码:2856 / 2873
页数:18
相关论文
共 29 条
[1]  
[Anonymous], 2008, P IEEE IND APPL SOC
[2]   Performance Evaluation of a Three-Phase Dual Active Bridge DC-DC Converter With Different Transformer Winding Configurations [J].
Baars, Nico H. ;
Everts, Jordi ;
Wijnands, Cornelis G. E. ;
Lomonova, Elena A. .
IEEE TRANSACTIONS ON POWER ELECTRONICS, 2016, 31 (10) :6814-6823
[3]   A 80-kW Isolated DC-DC Converter for Railway Applications [J].
Baars, Nico H. ;
Everts, Jordi ;
Huisman, Henk ;
Duarte, Jorge L. ;
Lomonova, Elena A. .
IEEE TRANSACTIONS ON POWER ELECTRONICS, 2015, 30 (12) :6639-6647
[4]  
Boyd S., 2009, CONVEX OPTIMIZATION
[5]   A 3-PHASE SOFT-SWITCHED HIGH-POWER-DENSITY DC-DC CONVERTER FOR HIGH-POWER APPLICATIONS [J].
DEDONCKER, RWAA ;
DIVAN, DM ;
KHERALUWALA, MH .
IEEE TRANSACTIONS ON INDUSTRY APPLICATIONS, 1991, 27 (01) :63-73
[6]   A Digital Predictive Current-Mode Controller for a Single-Phase High-Frequency Transformer-Isolated Dual-Active Bridge DC-to-DC Converter [J].
Dutta, Sumit ;
Hazra, Samir ;
Bhattacharya, Subhashish .
IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2016, 63 (09) :5943-5952
[7]   Comparison of the Modular Multilevel DC Converter and the Dual-Active Bridge Converter for Power Conversion in HVDC and MVDC Grids [J].
Engel, Stefan P. ;
Stieneker, Marco ;
Soltau, Nils ;
Rabiee, Sedigheh ;
Stagge, Hanno ;
De Doncker, Rik W. .
IEEE TRANSACTIONS ON POWER ELECTRONICS, 2015, 30 (01) :124-137
[8]   Improved Instantaneous Current Control for High-Power Three-Phase Dual-Active Bridge DC-DC Converters [J].
Engel, Stefan P. ;
Soltau, Nils ;
Stagge, Hanno ;
De Doncker, Rik W. .
IEEE TRANSACTIONS ON POWER ELECTRONICS, 2014, 29 (08) :4067-4077
[9]   Dynamic and Balanced Control of Three-Phase High-Power Dual-Active Bridge DC-DC Converters in DC-Grid Applications [J].
Engel, Stefan P. ;
Soltau, Nils ;
Stagge, Hanno ;
De Doncker, Rik W. .
IEEE TRANSACTIONS ON POWER ELECTRONICS, 2013, 28 (04) :1880-1889
[10]   High-Frequency Transformer Isolated Bidirectional DC-DC Converter Modules With High Efficiency Over Wide Load Range for 20 kVA Solid-State Transformer [J].
Fan, Haifeng ;
Li, Hui .
IEEE TRANSACTIONS ON POWER ELECTRONICS, 2011, 26 (12) :3599-3608