Kinetic parameters for thermal decomposition of microcrystalline, vegetal, and bacterial cellulose

被引:21
作者
Barud, Hernani S. [1 ]
Ribeiro, Clovis A. [1 ]
Capela, Jorge M. V. [1 ]
Crespi, Marisa S. [1 ]
Ribeiro, Sidney. J. L. [1 ]
Messadeq, Younes [1 ]
机构
[1] Araraquara Paulista State Univ, Inst Chem, BR-14800900 Sao Paulo, Brazil
关键词
Bacterial cellulose; Non-isothermal kinetic; Thermal decomposition; DEGRADATION;
D O I
10.1007/s10973-010-1118-9
中图分类号
O414.1 [热力学];
学科分类号
摘要
Cellulose can be obtained from innumerable sources such as cotton, trees, sugar cane bagasse, wood, bacteria, and others. The bacterial cellulose (BC) produced by the Gram-negative acetic-acid bacterium Acetobacter xylinum has several unique properties. This BC is produced as highly hydrated membranes free of lignin and hemicelluloses and has a higher molecular weight and higher crystallinity. Here, the thermal behavior of BC, was compared with those of microcrystalline (MMC) and vegetal cellulose (VC). The kinetic parameters for the thermal decomposition step of the celluloses were determined by the Capela-Ribeiro non-linear isoconversional method. From data for the TG curves in nitrogen atmosphere and at heating rates of 5, 10, and 20 A degrees C/min, the E-alpha and B-alpha terms could be determined and consequently the pre-exponential factor A(alpha) as well as the kinetic model g(alpha). The pyrolysis of celluloses followed kinetic model g(alpha) = [-ln(1 - alpha)](1.63) on average, characteristic for Avrami-Erofeev with only small differences in activation energy. The fractional value of n may be related to diffusion-controlled growth, or may arise from the distributions of sizes or shapes of the reactant particles.
引用
收藏
页码:421 / 426
页数:6
相关论文
共 27 条
[1]  
AKIRA K, 1979, FOR FOR PROD RES I B, V304, P7
[2]   Bacterial cellulose-silica organic-inorganic hybrids [J].
Barud, H. S. ;
Assuncao, R. M. N. ;
Martines, M. A. U. ;
Dexpert-Ghys, J. ;
Marques, R. F. C. ;
Messaddeq, Y. ;
Ribeiro, S. J. L. .
JOURNAL OF SOL-GEL SCIENCE AND TECHNOLOGY, 2008, 46 (03) :363-367
[3]   Thermal characterization of bacterial cellulose-phosphate composite membranes [J].
Barud, H. S. ;
Ribeiro, C. A. ;
Crespi, Marisa S. ;
Martines, M. A. U. ;
Dexpert-Ghys, J. ;
Marques, R. F. C. ;
Messaddeq, Y. ;
Ribeiro, S. J. L. .
JOURNAL OF THERMAL ANALYSIS AND CALORIMETRY, 2007, 87 (03) :815-818
[4]   Self-supported silver nanoparticles containing bacterial cellulose membranes [J].
Barud, Hemane S. ;
Barrios, Celina ;
Regiani, Thais ;
Marques, Rodrigo F. C. ;
Verelst, Marc ;
Dexpert-Ghys, Jeannette ;
Messaddeq, Younes ;
Ribeiro, Sidney J. L. .
MATERIALS SCIENCE & ENGINEERING C-BIOMIMETIC AND SUPRAMOLECULAR SYSTEMS, 2008, 28 (04) :515-518
[5]   An investigation of the kinetics of cellulose degradation under non-isothermal conditions [J].
Bigger, SW ;
Scheirs, J ;
Camino, G .
POLYMER DEGRADATION AND STABILITY, 1998, 62 (01) :33-40
[6]  
Bolhuis G.K., 1996, PHARM POWDER COMPACT
[7]   Rational approximations of the Arrhenius integral using Jacobi fractions and gaussian quadrature [J].
Capela, Jorge M. V. ;
Capela, Marisa V. ;
Ribeiro, Clovis A. .
JOURNAL OF MATHEMATICAL CHEMISTRY, 2009, 45 (03) :769-775
[8]   Kinetics of isothermal and non-isothermal degradation of cellulose: model-based and model-free methods [J].
Dahiya, Jai Bhagwan ;
Kumar, Krishan ;
Muller-Hagedorn, Matthias ;
Bockhorn, Henning .
POLYMER INTERNATIONAL, 2008, 57 (05) :722-729
[9]   On the kinetics of degradation of cellulose [J].
Emsley, AM ;
Heywood, RJ ;
Ali, M ;
Eley, CM .
CELLULOSE, 1997, 4 (01) :1-5
[10]   KINETIC AND SURFACE STUDY OF THERMAL-DECOMPOSITION OF CELLULOSE POWDER IN INERT AND OXIDIZING ATMOSPHERES [J].
FAIRBRIDGE, C ;
ROSS, RA ;
SOOD, SP .
JOURNAL OF APPLIED POLYMER SCIENCE, 1978, 22 (02) :497-510