Complete minimal surfaces in R3 with a prescribed coordinate function

被引:10
作者
Alarcon, Antonio [1 ]
Fernandez, Isabel [2 ]
机构
[1] Univ Granada, Dept Geometria & Topol, E-18071 Granada, Spain
[2] Univ Seville, Dept Matemat Aplicada 1, E-41012 Seville, Spain
关键词
Complete minimal surfaces; Harmonic functions; CONJECTURES; IMMERSIONS;
D O I
10.1016/j.difgeo.2011.04.002
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we construct complete simply connected minimal surfaces with a prescribed coordinate function. Moreover, we prove that these surfaces are dense in the space of all minimal surfaces with this coordinate function (with the topology of the smooth convergence on compact sets). (C) 2011 Elsevier B.V. All rights reserved.
引用
收藏
页码:S9 / S15
页数:7
相关论文
共 20 条
[1]  
Alarcón A, 2008, GEOM FUNCT ANAL, V18, P1, DOI 10.1007/s00039-008-0650-2
[2]   Limit sets for complete minimal immersions [J].
Alarcón, Antonio ;
Nadirashvili, Nikolai .
MATHEMATISCHE ZEITSCHRIFT, 2008, 258 (01) :107-113
[3]  
Alarcón A, 2013, CALC VAR PARTIAL DIF, V47, P227, DOI 10.1007/s00526-012-0517-0
[4]   Complete minimal surfaces and harmonic functions [J].
Alarcon, Antonio ;
Fernandez, Isabel ;
Lopez, Francisco J. .
COMMENTARII MATHEMATICI HELVETICI, 2012, 87 (04) :891-904
[5]   COMPACT COMPLETE MINIMAL IMMERSIONS IN R3 [J].
Alarcon, Antonio .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2010, 362 (08) :4063-4076
[6]   ON THE RADIAL VARIATION OF BOUNDED ANALYTIC-FUNCTIONS ON THE DISC [J].
BOURGAIN, J .
DUKE MATHEMATICAL JOURNAL, 1993, 69 (03) :671-682
[7]  
Calabi E., 1966, P US JAP SEM DIFF GE, P170
[8]   The Calabi-Yau conjectures for embedded surfaces [J].
Colding, Tobias H. ;
Minicozzi, William P., II .
ANNALS OF MATHEMATICS, 2008, 167 (01) :211-243
[9]   The space of complete embedded maximal surfaces with isolated singularities in the 3-dimensional Lorentz-Minkowski space [J].
Fernández, I ;
López, FJ ;
Souam, R .
MATHEMATISCHE ANNALEN, 2005, 332 (03) :605-643
[10]  
Ferrer L., ARXIV09034194