A Lithium Amide-Borohydride Solid-State Electrolyte with Lithium-Ion Conductivities Comparable to Liquid Electrolytes

被引:98
作者
Yan, Yigang [1 ]
Kuhnel, Ruben-Simon [1 ]
Remhof, Arndt [1 ]
Duchene, Leo [1 ,2 ]
Reyes, Eduardo Cuervo [1 ]
Rentsch, Daniel [1 ]
Lodziana, Zbigniew [3 ]
Battaglia, Corsin [1 ]
机构
[1] Swiss Fed Labs Mat Sci & Technol, Empa, CH-8600 Dubendorf, Switzerland
[2] Univ Geneva, Dept Chim Phys, CH-1211 Geneva, Switzerland
[3] Polish Acad Sci, Inst Nucl Phys, PL-31342 Krakow, Poland
基金
瑞士国家科学基金会;
关键词
all-solid-state lithium-ion batteries; complex hydrides; solid-state electrolytes; SUPERIONIC CONDUCTORS; CRYSTAL-STRUCTURE; BATTERIES; LI10GEP2S12;
D O I
10.1002/aenm.201700294
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
High ionic conductivity of up to 6.4 x 10(-3) S cm(-1) near room temperature (40 degrees C) in lithium amide-borohydrides is reported, comparable to values of liquid organic electrolytes commonly employed in lithium-ion batteries. Density functional theory is applied coupled with X-ray diffraction, calorimetry, and nuclear magnetic resonance experiments to shed light on the conduction mechanism. A Li4Ti5O12 half-cell battery incorporating the lithium amide-borohydride electrolyte exhibits good rate performance up to 3.5 mA cm(-2) (5 C) and stable cycling over 400 cycles at 1 C at 40 degrees C, indicating high bulk and interfacial stability. The results demonstrate the potential of lithium amide-borohydrides as solid-state electrolytes for high-power lithium-ion batteries.
引用
收藏
页数:7
相关论文
共 34 条
[1]   PROJECTOR AUGMENTED-WAVE METHOD [J].
BLOCHL, PE .
PHYSICAL REVIEW B, 1994, 50 (24) :17953-17979
[2]   Li10SnP2S12: An Affordable Lithium Superionic Conductor [J].
Bron, Philipp ;
Johansson, Sebastian ;
Zick, Klaus ;
auf der Guenne, Joern Schmedt ;
Dehnen, Stefanie ;
Roling, Bernhard .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2013, 135 (42) :15694-15697
[3]  
Chater PA, 2006, CHEM COMMUN, P2439, DOI 10.1039/b518243c
[4]   First-principles molecular dynamics study of the structure and dynamic behavior of liquid Li4BN3H10 [J].
Farrell, David E. ;
Shin, Dongwon ;
Wolverton, C. .
PHYSICAL REVIEW B, 2009, 80 (22)
[5]   On the composition and crystal structure of the new quaternary hydride phase Li4BN3H10 [J].
Filinchuk, YE ;
Yvon, K ;
Meisner, GP ;
Pinkerton, FE ;
Balogh, MP .
INORGANIC CHEMISTRY, 2006, 45 (04) :1433-1435
[6]   A climbing image nudged elastic band method for finding saddle points and minimum energy paths [J].
Henkelman, G ;
Uberuaga, BP ;
Jónsson, H .
JOURNAL OF CHEMICAL PHYSICS, 2000, 113 (22) :9901-9904
[7]   Synthesis, structure, and ionic conductivity of solid solution, Li10+δM1+δP2-δS12 (M = Si, Sn) [J].
Hori, Satoshi ;
Suzuki, Kota ;
Hirayama, Masaaki ;
Kato, Yuki ;
Saito, Toshiya ;
Yonemura, Masao ;
Kanno, Ryoji .
FARADAY DISCUSSIONS, 2014, 176 :83-94
[8]  
Kamaya N, 2011, NAT MATER, V10, P682, DOI [10.1038/NMAT3066, 10.1038/nmat3066]
[9]   High-power all-solid-state batteries using sulfide superionic conductors [J].
Kato, Yuki ;
Hori, Satoshi ;
Saito, Toshiya ;
Suzuki, Kota ;
Hirayama, Masaaki ;
Mitsui, Akio ;
Yonemura, Masao ;
Iba, Hideki ;
Kanno, Ryoji .
NATURE ENERGY, 2016, 1
[10]   Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set [J].
Kresse, G ;
Furthmuller, J .
PHYSICAL REVIEW B, 1996, 54 (16) :11169-11186