Symmetric solutions of a multi-point boundary value problem

被引:32
|
作者
Kosmatov, N [1 ]
机构
[1] Univ Arkansas, Dept Math & Stat, Little Rock, AR 72204 USA
关键词
Green's function; fixed point theorem; multi-point boundary value problem; triple solutions;
D O I
10.1016/j.jmaa.2004.11.008
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We apply the fixed point theorem of Avery and Peterson to the nonlinear second-order multi-point boundary value problem -u"(t) = a(t) f (t, u(t), |u'(t)|), t is an element of (0, 1), u(0)= Sigma(i=1)mu iu(zeta i), u(1-t)=u(t), t is an element of[0,1], where 0 <zeta(1) < zeta(2) < ...< zeta(11) <= 1/2, mu > 0 for i = 1, ... , n with Sigma(n)(i=1) < 1, n >= 2.We show that under the appropriate growth conditions on the inhomogeneous term symmetric about t = 1/2 the problem has triple symmetric solutions. (c) 2004 Elsevier Inc. All rights reserved.
引用
收藏
页码:25 / 36
页数:12
相关论文
共 50 条