Additive Manufacturing of Ti3C2-MXene-Functionalized Conductive Polymer Hydrogels for Electromagnetic-Interference Shielding

被引:220
作者
Liu, Ji [1 ,2 ,3 ,4 ]
Mckeon, Lorcan [1 ,2 ,3 ,4 ]
Garcia, James [1 ,2 ,5 ]
Pinilla, Sergio [1 ,2 ,3 ]
Barwich, Sebastian [5 ]
Mobius, Matthias [5 ]
Stamenov, Plamen [1 ,2 ,5 ]
Coleman, Jonathan N. [1 ,2 ,5 ]
Nicolosi, Valeria [1 ,2 ,3 ,4 ]
机构
[1] Trinity Coll Dublin, Ctr Res Adapt Nanostruct & Nanodevices CRANN, Dublin D02 PN40 2, Ireland
[2] Trinity Coll Dublin, Adv Mat Bioengn Res Ctr AMBER, Dublin D02 PN40 2, Ireland
[3] Trinity Coll Dublin, Sch Chem, Dublin D02 PN40 2, Ireland
[4] Trinity Coll Dublin, I FORM Adv Mfg Res Ctr, Dublin D02 PN40 2, Ireland
[5] Trinity Coll Dublin, Sch Phys, Dublin D02 PN40 2, Ireland
基金
欧洲研究理事会; 爱尔兰科学基金会; 欧盟地平线“2020”;
关键词
additive manufacturing; electromagnetic-interference shielding; hydrogels; MXenes; poly(3,4-ethylenedioxythiophene):polystyrene sulfonate (PEDOT:PSS); FILM;
D O I
10.1002/adma.202106253
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The ongoing miniaturization of devices and development of wireless and implantable technologies demand electromagnetic interference (EMI)-shielding materials with customizability. Additive manufacturing of conductive polymer hydrogels with favorable conductivity and biocompatibility can offer new opportunities for EMI-shielding applications. However, simultaneously achieving high conductivity, design freedom, and shape fidelity in 3D printing of conductive polymer hydrogels is still very challenging. Here, an aqueous Ti3C2-MXene-functionalized poly(3,4-ethylenedioxythiophene):polystyrene sulfonate ink is developed for extrusion printing to create 3D objects with arbitrary geometries, and a freeze-thawing protocol is proposed to transform the printed objects directly into highly conductive and robust hydrogels with high shape fidelity on both the macro- and microscale. The as-obtained hydrogel exhibits a high conductivity of 1525.8 S m(-1) at water content up to 96.6 wt% and also satisfactory mechanical properties with flexibility, stretchability, and fatigue resistance. Furthermore, the use of the printed hydrogel for customizable EMI-shielding applications is demonstrated. The proposed easy-to-manufacture approach, along with the highlighted superior properties, expands the potential of conductive polymer hydrogels in future customizable applications and represents a real breakthrough from the current state of the art.
引用
收藏
页数:8
相关论文
共 41 条
[1]   Recent advances in carbon-based polymer nanocomposites for electromagnetic interference shielding [J].
Abbasi, Hooman ;
Antunes, Marcelo ;
Ignacio Velasco, Jose .
PROGRESS IN MATERIALS SCIENCE, 2019, 103 :319-373
[2]   Rheological Characteristics of 2D Titanium Carbide (MXene) Dispersions: A Guide for Processing MXenes [J].
Akuzum, Bilen ;
Maleski, Kathleen ;
Anasori, Babak ;
Lelyukh, Pavel ;
Alvarez, Nicolas Javier ;
Kumbur, E. Caglan ;
Gogotsi, Yury .
ACS NANO, 2018, 12 (03) :2685-2694
[3]   Guidelines for Synthesis and Processing of Two-Dimensional Titanium Carbide (Ti3C2TX MXene) [J].
Alhabeb, Mohamed ;
Maleski, Kathleen ;
Anasori, Babak ;
Lelyukh, Pavel ;
Clark, Leah ;
Sin, Saleesha ;
Gogotsi, Yury .
CHEMISTRY OF MATERIALS, 2017, 29 (18) :7633-7644
[4]   Pristine Titanium Carbide MXene Hydrogel Matrix [J].
Chen, Hongwu ;
Ma, Hongyun ;
Zhang, Panpan ;
Wen, Yeye ;
Qu, Liangti ;
Li, Chun .
ACS NANO, 2020, 14 (08) :10471-10479
[5]   Kirigami-Inspired Highly Stretchable, Conductive, and Hierarchical Ti3C2Tx MXene Films for Efficient Electromagnetic Interference Shielding and Pressure Sensing [J].
Chen, Wei ;
Liu, Liu-Xin ;
Zhang, Hao-Bin ;
Yu, Zhong-Zhen .
ACS NANO, 2021, 15 (04) :7668-7681
[6]   Highly conductive, stretchable and biocompatible Ag-Au core-sheath nanowire composite for wearable and implantable bioelectronics [J].
Choi, Suji ;
Han, Sang Ihn ;
Jung, Dongjun ;
Hwang, Hye Jin ;
Lim, Chaehong ;
Bae, Soochan ;
Park, Ok Kyu ;
Tschabrunn, Cory M. ;
Lee, Mincheol ;
Bae, Sun Youn ;
Yu, Ji Woong ;
Ryu, Ji Ho ;
Lee, Sang-Woo ;
Park, Kyungpyo ;
Kang, Peter M. ;
Lee, Won Bo ;
Nezafat, Reza ;
Hyeon, Taeghwan ;
Kim, Dae-Hyeong .
NATURE NANOTECHNOLOGY, 2018, 13 (11) :1048-+
[7]   Fast Gelation of Ti3C2Tx MXene Initiated by Metal Ions [J].
Deng, Yaqian ;
Shang, Tongxin ;
Wu, Zhitan ;
Tao, Ying ;
Luo, Chong ;
Liang, Jiachen ;
Han, Daliang ;
Lyu, Ruiyang ;
Qi, Changsheng ;
Lv, Wei ;
Kang, Feiyu ;
Yang, Quan-Hong .
ADVANCED MATERIALS, 2019, 31 (43)
[8]   An Electrochemical Gelation Method for Patterning Conductive PEDOT:PSS Hydrogels [J].
Feig, Vivian Rachel ;
Tran, Helen ;
Lee, Minah ;
Liu, Kathy ;
Huang, Zhuojun ;
Beker, Levent ;
Mackanic, David G. ;
Bao, Zhenan .
ADVANCED MATERIALS, 2019, 31 (39)
[9]   In situ spectroelectrochemical Raman studies of poly(3,4-ethylenedioxythiophene) (PEDT) [J].
Garreau, S ;
Louarn, G ;
Buisson, JP ;
Froyer, G ;
Lefrant, S .
MACROMOLECULES, 1999, 32 (20) :6807-6812
[10]   MXene/Polymer Hybrid Materials for Flexible AC-Filtering Electrochemical Capacitors [J].
Gund, Girish Sambhaji ;
Park, Jeong Hee ;
Harpalsinh, Rana ;
Kota, Manikantan ;
Shin, Joo Hwan ;
Kim, Tae-il ;
Gogotsi, Yury ;
Park, Ho Seok .
JOULE, 2019, 3 (01) :164-176