An Improved Aeromagnetic Compensation Method Robust to Geomagnetic Gradient

被引:19
作者
Feng, Yongqiang [1 ,2 ,3 ]
Zhang, Qimao [1 ,2 ]
Zheng, Yaoxin [1 ,2 ,3 ]
Qu, Xiaodong [4 ]
Wu, Fang [5 ]
Fang, Guangyou [1 ,2 ]
机构
[1] Chinese Acad Sci, Aerosp Informat Res Inst, 9 Dengzhuang South Rd, Beijing 100094, Peoples R China
[2] Chinese Acad Sci, Key Lab Electromagnet Radiat & Sensing Technol, 19 North 4th Ring West Rd, Beijing 100190, Peoples R China
[3] Univ Chinese Acad Sci, Sch Elect Elect & Commun Engn, Beijing 100039, Peoples R China
[4] Beijing Inst Technol, Sch Informat & Elect, 5 South St, Beijing 100081, Peoples R China
[5] Naval Aviat Univ, 8 Honghou Rd, Yantai 264001, Peoples R China
来源
APPLIED SCIENCES-BASEL | 2022年 / 12卷 / 03期
基金
中国国家自然科学基金; 国家重点研发计划;
关键词
aeromagnetic compensation; geomagnetic gradient; IGRF; magnetic anomaly detection; UNMANNED AIRCRAFT SYSTEM; EXPLORATION;
D O I
10.3390/app12031490
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Aeromagnetic surveys play an important role in many fields, for example, archaeology, anti-submarine warfare, and geophysical exploration. Being in the geomagnetic field, the aircraft generates a great deal of magnetic interference, resulting in bad performance during detection surveys. Thus, it is necessary and important to perform aeromagnetic compensation in advance. Conventional aeromagnetic compensation methods consider that the geomagnetic gradient is approximately zero after bandpass filtering, bringing about the inaccuracy of compensation coefficients. To address this issue, an improved aeromagnetic compensation method robust to geomagnetic gradient is proposed. In this study, the International Geomagnetic Reference Field (IGRF) model was employed to model the geomagnetic gradient. Then, the estimated geomagnetic gradient was subtracted from the measured data, which improved the accuracy of the compensation equations. Field experiments were conducted to verify the effectiveness of the proposed method. The experimental results show that compared to the traditional method, the compensation performance of the proposed method was improved by 152% to 329%. For the level flight, the standard deviation of residual noise after compensation can be as low as 3.3pT. The results indicate that the proposed method can significantly improve the compensation effect, showing great benefits for weak magnetic anomaly detection.
引用
收藏
页数:16
相关论文
共 32 条
[1]   International Geomagnetic Reference Field: the thirteenth generation [J].
Alken, P. ;
Thebault, E. ;
Beggan, C. D. ;
Amit, H. ;
Aubert, J. ;
Baerenzung, J. ;
Bondar, T. N. ;
Brown, W. J. ;
Califf, S. ;
Chambodut, A. ;
Chulliat, A. ;
Cox, G. A. ;
Finlay, C. C. ;
Fournier, A. ;
Gillet, N. ;
Grayver, A. ;
Hammer, M. D. ;
Holschneider, M. ;
Huder, L. ;
Hulot, G. ;
Jager, T. ;
Kloss, C. ;
Korte, M. ;
Kuang, W. ;
Kuvshinov, A. ;
Langlais, B. ;
Leger, J. -M. ;
Lesur, V. ;
Livermore, P. W. ;
Lowes, F. J. ;
Macmillan, S. ;
Magnes, W. ;
Mandea, M. ;
Marsal, S. ;
Matzka, J. ;
Metman, M. C. ;
Minami, T. ;
Morschhauser, A. ;
Mound, J. E. ;
Nair, M. ;
Nakano, S. ;
Olsen, N. ;
Pavon-Carrasco, F. J. ;
Petrov, V. G. ;
Ropp, G. ;
Rother, M. ;
Sabaka, T. J. ;
Sanchez, S. ;
Saturnino, D. ;
Schnepf, N. R. .
EARTH PLANETS AND SPACE, 2021, 73 (01)
[2]   Interpretation of high-resolution low-altitude helicopter magnetometer surveys over sites contaminated with unexploded ordnance [J].
Billings, Stephen ;
Wright, David .
JOURNAL OF APPLIED GEOPHYSICS, 2010, 72 (04) :225-231
[3]   A Novel Strategy for Improving the Aeromagnetic Compensation Performance of Helicopters [J].
Chen, Luzhao ;
Wu, Peilin ;
Zhu, Wanhua ;
Feng, Yongqiang ;
Fang, Guangyou .
SENSORS, 2018, 18 (06)
[4]   Aeromagnetic Surveying with a Rotary-Wing Unmanned Aircraft System: A Case Study from a Zinc Deposit in Nash Creek, New Brunswick, Canada [J].
Cunningham, Michael ;
Samson, Claire ;
Wood, Alan ;
Cook, Ian .
PURE AND APPLIED GEOPHYSICS, 2018, 175 (09) :3145-3158
[5]   Results of an Airborne Vertical Magnetic Gradient Demonstration, New Mexico [J].
Doll, William E. ;
Sheehan, Jacob R. ;
Gamey, T. Jeffrey ;
Beard, Les P. ;
Norton, Jeannemarie .
JOURNAL OF ENVIRONMENTAL AND ENGINEERING GEOPHYSICS, 2008, 13 (03) :277-290
[6]   An Adaptive Filter for Aeromagnetic Compensation Based on Wavelet Multiresolution Analysis [J].
Dou, Zhenjia ;
Han, Qi ;
Niu, Xiamu ;
Peng, Xiang ;
Guo, Hong .
IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2016, 13 (08) :1069-1073
[7]   An Aeromagnetic Compensation Coefficient-Estimating Method Robust to Geomagnetic Gradient [J].
Dou, Zhenjia ;
Han, Qi ;
Niu, Xiamu ;
Peng, Xiang ;
Guo, Hong .
IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2016, 13 (05) :611-615
[8]   Extended aeromagnetic compensation modelling including non-manoeuvring interferences [J].
Du, Changping ;
Wang, Haidong ;
Wang, He ;
Xia, Mingyao ;
Peng, Xiang ;
Han, Qi ;
Zou, Pengyi ;
Guo, Hong .
IET SCIENCE MEASUREMENT & TECHNOLOGY, 2019, 13 (07) :1033-1039
[9]   Magnetic Signature Attenuation of an Unmanned Aircraft System for Aeromagnetic Survey [J].
Forrester, Robert ;
Huq, M. Saiful ;
Ahmadi, Mojtaba ;
Straznicky, Paul .
IEEE-ASME TRANSACTIONS ON MECHATRONICS, 2014, 19 (04) :1436-1446
[10]   Modeling and reduction of the gradient effect of a magnetic sensor for an aeromagnetic compensator [J].
Ge, Jian ;
Wang, Wenjie ;
Dong, Haobin ;
Liu, Huan ;
Zhang, Xinglin ;
Luo, Wang ;
Zhang, Haiyang ;
Zhu, Jun .
REVIEW OF SCIENTIFIC INSTRUMENTS, 2021, 92 (02)