3D Printing of Hierarchical Scaffolds Based on Mesoporous Bioactive Glasses (MBGs)-Fundamentals and Applications

被引:47
作者
Baino, Francesco [1 ]
Fiume, Elisa [1 ]
机构
[1] Politecn Torino, Appl Sci & Technol Dept, Inst Mat Phys & Engn, Corso Duca Abruzzi 24, I-10129 Turin, Italy
关键词
biomaterials; bioglass; scaffold; mesoporous; additive manufacturing; tissue regeneration; hierarchical; porosity; drug delivery; ion release; bioactivity; MELT-DERIVED; 45S5; IN-VITRO; BONE REGENERATION; DRUG-DELIVERY; MECHANICAL-PROPERTIES; COMPOSITE SCAFFOLDS; STRONTIUM RANELATE; GENE-EXPRESSION; DIFFERENTIATION; POROSITY;
D O I
10.3390/ma13071688
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The advent of mesoporous bioactive glasses (MBGs) in applied bio-sciences led to the birth of a new class of nanostructured materials combining triple functionality, that is, bone-bonding capability, drug delivery and therapeutic ion release. However, the development of hierarchical three-dimensional (3D) scaffolds based on MBGs may be difficult due to some inherent drawbacks of MBGs (e.g., high brittleness) and technological challenges related to their fabrication in a multiscale porous form. For example, MBG-based scaffolds produced by conventional porogen-assisted methods exhibit a very low mechanical strength, making them unsuitable for clinical applications. The application of additive manufacturing techniques significantly improved the processing of these materials, making it easier preserving the textural and functional properties of MBGs and allowing stronger scaffolds to be produced. This review provides an overview of the major aspects relevant to 3D printing of MBGs, including technological issues and potential applications of final products in medicine.
引用
收藏
页数:19
相关论文
共 99 条
[1]   Bioceramics for drug delivery [J].
Arcos, Daniel ;
Vallet-Regi, Maria .
ACTA MATERIALIA, 2013, 61 (03) :890-911
[2]   Sol-gel silica-based biomaterials and bone tissue regeneration [J].
Arcos, Daniel ;
Vallet-Regi, Maria .
ACTA BIOMATERIALIA, 2010, 6 (08) :2874-2888
[3]   Robocasting of Bioactive SiO2-P2O5-CaO-MgO-Na2O-K2O Glass Scaffolds [J].
Baino, Francesco ;
Barberi, Jacopo ;
Fiume, Elisa ;
Orlygsson, Gissur ;
Massera, Jonathan ;
Verne, Enrica .
JOURNAL OF HEALTHCARE ENGINEERING, 2019, 2019
[4]   Processing methods for making porous bioactive glass-based scaffolds-A state-of-the-art review [J].
Baino, Francesco ;
Fiume, Elisa ;
Barberi, Jacopo ;
Kargozar, Saeid ;
Marchi, Juliana ;
Massera, Jonathan ;
Verne, Enrica .
INTERNATIONAL JOURNAL OF APPLIED CERAMIC TECHNOLOGY, 2019, 16 (05) :1762-1796
[5]   Bioactive sol-gel glasses: Processing, properties, and applications [J].
Baino, Francesco ;
Fiume, Elisa ;
Miola, Marta ;
Verne, Enrica .
INTERNATIONAL JOURNAL OF APPLIED CERAMIC TECHNOLOGY, 2018, 15 (04) :841-860
[6]  
Baino F, 2017, WOODH PUBL SER BIOM, P249, DOI 10.1016/B978-0-08-100881-2.00007-5
[7]   Learning from Nature: Using bioinspired approaches and natural materials to make porous bioceramics [J].
Baino, Francesco ;
Ferraris, Monica .
INTERNATIONAL JOURNAL OF APPLIED CERAMIC TECHNOLOGY, 2017, 14 (04) :507-520
[8]   Bioactive glass-based materials with hierarchical porosity for medical applications: Review of recent advances [J].
Baino, Francesco ;
Fiorilli, Sonia ;
Vitale-Brovarone, Chiara .
ACTA BIOMATERIALIA, 2016, 42 :18-32
[9]  
Barberi J., 2019, BIOMED GLASSES, V5, P140, DOI [10.1515/bglass-2019-0012, DOI 10.1515/BGLASS-2019-0012]
[10]   Dual effect of strontium ranelate:: Stimulation of osteoblast differentiation and inhibition of osteoclast formation and resorption in vitro [J].
Bonnelye, Edith ;
Chabadel, Anne ;
Saltel, Frederic ;
Jurdic, Pierre .
BONE, 2008, 42 (01) :129-138