Towards calibration-invariant spectroscopy using deep learning

被引:60
作者
Chatzidakis, M. [1 ,2 ]
Botton, G. A. [1 ,2 ]
机构
[1] McMaster Univ, Dept Mat Sci & Engn, 1280 Main St West, Hamilton, ON L9H 4L7, Canada
[2] McMaster Univ, Canadian Ctr Electron Microscopy, 1280 Main St West, Hamilton, ON L8S 4M1, Canada
基金
加拿大创新基金会; 加拿大自然科学与工程研究理事会;
关键词
MULTIVARIATE-ANALYSIS; NEURAL-NETWORKS; RECOGNITION;
D O I
10.1038/s41598-019-38482-1
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The interaction between matter and electromagnetic radiation provides a rich understanding of what the matter is composed of and how it can be quantified using spectrometers. In many cases, however, the calibration of the spectrometer changes as a function of time (such as in electron spectrometers), or the absolute calibration may be different between different instruments. Calibration differences cause difficulties in comparing the absolute position of measured emission or absorption peaks between different instruments and even different measurements taken at different times on the same instrument. Present methods of avoiding this issue involve manual feature extraction of the original signal or qualitative analysis. Here we propose automated feature extraction using deep convolutional neural networks to determine the class of compound given only the shape of the spectrum. We classify three unique electronic environments of manganese (being relevant to many battery materials applications) in electron energy loss spectroscopy using 2001 spectra we collected in addition to testing on spectra from different instruments. We test a variety of commonly used neural network architectures found in the literature and propose a new fully convolutional architecture with improved translation-invariance which is immune to calibration differences.
引用
收藏
页数:10
相关论文
共 25 条
[1]  
[Anonymous], 2016, CoRR abs/1512.00567, DOI DOI 10.1109/CVPR.2016.308
[2]  
Azulay Aharon., 2018, 180512177 ARXIV
[3]   Independent component analysis: A new possibility for analysing series of electron energy loss spectra [J].
Bonnet, N ;
Nuzillard, D .
ULTRAMICROSCOPY, 2005, 102 (04) :327-337
[4]   Two-dimensional mapping of chemical information at atomic resolution [J].
Bosman, M. ;
Keast, V. J. ;
Garcia-Munoz, J. L. ;
D'Alfonso, A. J. ;
Findlay, S. D. ;
Allen, L. J. .
PHYSICAL REVIEW LETTERS, 2007, 99 (08)
[5]   Mapping chemical and bonding information using multivariate analysis of electron energy-loss spectrum images [J].
Bosman, M. ;
Watanabe, M. ;
Alexander, D. T. L. ;
Keast, V. J. .
ULTRAMICROSCOPY, 2006, 106 (11-12) :1024-1032
[6]   Mapping surface plasmons at the nanometre scale with an electron beam [J].
Bosman, Michel ;
Keast, Vicki J. ;
Watanabe, Masashi ;
Maaroof, Abbas I. ;
Cortie, Michael B. .
NANOTECHNOLOGY, 2007, 18 (16)
[7]   Machine learning tools formineral recognition and classification from Raman spectroscopy [J].
Carey, C. ;
Boucher, T. ;
Mahadevan, S. ;
Bartholomew, P. ;
Dyar, M. D. .
JOURNAL OF RAMAN SPECTROSCOPY, 2015, 46 (10) :894-903
[8]   Data Processing for Atomic Resolution Electron Energy Loss Spectroscopy [J].
Cueva, Paul ;
Hovden, Robert ;
Mundy, Julia A. ;
Xin, Huolin L. ;
Muller, David A. .
MICROSCOPY AND MICROANALYSIS, 2012, 18 (04) :667-675
[9]  
Gallagher M, 2002, ICONIP'02: PROCEEDINGS OF THE 9TH INTERNATIONAL CONFERENCE ON NEURAL INFORMATION PROCESSING, P2683
[10]  
GARVIE LAJ, 1994, PHYS CHEM MINER, V21, P191