Sex differences in circadian food anticipatory activity are not altered by individual manipulations of sex hormones or sex chromosome copy number in mice

被引:8
作者
Aguayo, Antonio [1 ]
Martin, Camille S. [1 ]
Huddy, Timothy F. [1 ]
Ogawa-Okada, Maya [1 ]
Adkins, Jamie L. [1 ]
Steele, Andrew D. [1 ]
机构
[1] Calif State Polytech Univ Pomona, Dept Biol Sci, Pomona, CA 91768 USA
关键词
RHYTHMS; RESTRICTION; CLOCKS; SYSTEM; BRAIN;
D O I
10.1371/journal.pone.0191373
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Recent studies in mice have demonstrated a sexual dimorphism in circadian entrainment to scheduled feeding. On a time restricted diet, males tend to develop food anticipatory activity (FAA) sooner than females and with a higher amplitude of activity. The underlying cause of this sex difference remains unknown. One study suggests that sex hormones, both androgens and estrogens, modulate food anticipatory activity in mice. Here we present results suggesting that the sex difference in FAA is unrelated to gonadal sex hormones. While a sex difference between males and females in FAA on a timed, calorie restricted diet was observed there were no differences between intact and gonadectomized mice in the onset or magnitude of FAA. To test other sources of the sex difference in circadian entrainment to scheduled feeding, we used sex chromosome copy number mutants, but there was no difference in FAA when comparing XX, XY-, XY-; Sry Tg, and XX; Sry Tg mice, demonstrating that gene dosage of sex chromosomes does not mediate the sex difference in FAA. Next, we masculinized female mice by treating them with 17-beta estradiol during the neonatal period; yet again, we saw no difference in FAA between control and masculinized females. Finally, we observed that there was no longer a sex difference in FAA for older mice, suggesting that the sex difference in FAA is age-dependent. Thus, our study demonstrates that singular manipulations of gonadal hormones, sex chromosomes, or developmental patterning are not able to explain the difference in FAA between young male and female mice.
引用
收藏
页数:13
相关论文
共 25 条
[1]   A General Theory of Sexual Differentiation [J].
Arnold, Arthur P. .
JOURNAL OF NEUROSCIENCE RESEARCH, 2017, 95 (1-2) :291-300
[2]   EFFECT OF CASTRATION AND TESTOSTERONE REPLACEMENT ON A CIRCADIAN PACEMAKER IN MICE (MUS-MUSCULUS) [J].
DAAN, S ;
DAMASSA, D ;
PITTENDRIGH, CS ;
SMITH, ER .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1975, 72 (09) :3744-3747
[3]  
DAVIS FC, 1983, AM J PHYSIOL, V244, pR93, DOI 10.1152/ajpregu.1983.244.1.R93
[4]   Dopamine receptor 1 neurons in the dorsal striatum regulate food anticipatory circadian activity rhythms in mice [J].
Gallardo, Christian M. ;
Darvas, Martin ;
Oviatt, Mia ;
Chang, Chris H. ;
Michalik, Mateusz ;
Huddy, Timothy F. ;
Meyer, Emily ;
Shuster, Scott A. ;
Aguayo, Antonio ;
Hill, Elizabeth M. ;
Kiani, Karun ;
Ikpeazu, Jonathan ;
Martinez, Johan S. ;
Purpura, Mari ;
Smit, Andrea N. ;
Patton, Danica ;
Mistlberger, Ralph E. ;
Palmiter, Richard D. ;
Steele, Andrew D. .
ELIFE, 2014, 3 :e03781
[5]   Behavioral and Neural Correlates of Acute and Scheduled Hunger in C57BL/6 Mice [J].
Gallardo, Christian M. ;
Hsu, Cynthia T. ;
Gunapala, Keith M. ;
Parfyonov, Maksim ;
Chang, Chris H. ;
Mistlberger, Ralph E. ;
Steele, Andrew D. .
PLOS ONE, 2014, 9 (05)
[6]   Single Gene Deletions of Orexin, Leptin, Neuropeptide Y, and Ghrelin Do Not Appreciably Alter Food Anticipatory Activity in Mice [J].
Gunapala, Keith M. ;
Gallardo, Christian M. ;
Hsu, Cynthia T. ;
Steele, Andrew D. .
PLOS ONE, 2011, 6 (03)
[7]   The SCN-independent clocks, methamphetamine and food restriction [J].
Honma, Ken-ichi ;
Honma, Sato .
EUROPEAN JOURNAL OF NEUROSCIENCE, 2009, 30 (09) :1707-1717
[8]  
Hsu CT, 2010, PLOS ONE, V9
[9]   Gonadectomy reveals sex differences in circadian rhythms and suprachiasmatic nucleus androgen receptors in mice [J].
Iwahana, Eiko ;
Karatsoreos, Ilia ;
Shibata, Shigenobu ;
Silver, Rae .
HORMONES AND BEHAVIOR, 2008, 53 (03) :422-430
[10]   Androgens Modulate Structure and Function of the Suprachiasmatic Nucleus Brain Clock [J].
Karatsoreos, Ilia N. ;
Butler, Matthew P. ;
LeSauter, Joseph ;
Silver, Rae .
ENDOCRINOLOGY, 2011, 152 (05) :1970-1978