Anderson Localization or Nonlinear Waves: A Matter of Probability

被引:45
作者
Ivanchenko, M. V. [1 ,2 ]
Laptyeva, T. V. [2 ]
Flach, S. [2 ]
机构
[1] Univ Nizhniy Novgorod, Theory Oscillat Dept, Nizhnii Novgorod, Russia
[2] Max Planck Inst Phys Komplexer Syst, D-01187 Dresden, Germany
关键词
2 INTERACTING PARTICLES; COHERENT PROPAGATION; KAM TORI; MODEL; DIFFUSION; TRANSPORT; LATTICES; SYSTEMS; ABSENCE;
D O I
10.1103/PhysRevLett.107.240602
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In linear disordered systems Anderson localization makes any wave packet stay localized for all times. Its fate in nonlinear disordered systems (localization versus propagation) is under intense theoretical debate and experimental study. We resolve this dispute showing that, unlike in the common hypotheses, the answer is probabilistic rather than exclusive. At any small but finite nonlinearity (energy) value there is a finite probability for Anderson localization to break up and propagating nonlinear waves to take over. It increases with nonlinearity (energy) and reaches unity at a certain threshold, determined by the initial wave packet size. Moreover, the spreading probability stays finite also in the limit of infinite packet size at fixed total energy. These results generalize to higher dimensions as well.
引用
收藏
页数:4
相关论文
共 33 条
[1]  
Aleiner IL, 2010, NAT PHYS, V6, P900, DOI [10.1038/nphys1758, 10.1038/NPHYS1758]
[2]   ABSENCE OF DIFFUSION IN CERTAIN RANDOM LATTICES [J].
ANDERSON, PW .
PHYSICAL REVIEW, 1958, 109 (05) :1492-1505
[3]  
Arnold V. I., 1964, Sov. Math. Doklady, V5, P581
[4]   KAM TORI AND ABSENCE OF DIFFUSION OF A WAVE-PACKET IN THE 1D RANDOM DNLS MODEL [J].
Aubry, S. .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2011, 21 (08) :2125-2145
[5]   Weak chaos in the disordered nonlinear Schrodinger chain: Destruction of Anderson localization by Arnold diffusion [J].
Basko, D. M. .
ANNALS OF PHYSICS, 2011, 326 (07) :1577-1655
[6]   Direct observation of Anderson localization of matter waves in a controlled disorder [J].
Billy, Juliette ;
Josse, Vincent ;
Zuo, Zhanchun ;
Bernard, Alain ;
Hambrecht, Ben ;
Lugan, Pierre ;
Clement, David ;
Sanchez-Palencia, Laurent ;
Bouyer, Philippe ;
Aspect, Alain .
NATURE, 2008, 453 (7197) :891-894
[7]   Nonlinear waves in disordered chains: Probing the limits of chaos and spreading [J].
Bodyfelt, J. D. ;
Laptyeva, T. V. ;
Skokos, Ch. ;
Krimer, D. O. ;
Flach, S. .
PHYSICAL REVIEW E, 2011, 84 (01)
[8]  
Bourgain J, 2008, J EUR MATH SOC, V10, P1
[9]  
DREISSLER B, 2010, NATURE PHYS, V6, P354
[10]   Anderson transitions [J].
Evers, Ferdinand ;
Mirlin, Alexander D. .
REVIEWS OF MODERN PHYSICS, 2008, 80 (04) :1355-1417