Anderson Localization or Nonlinear Waves: A Matter of Probability

被引:45
|
作者
Ivanchenko, M. V. [1 ,2 ]
Laptyeva, T. V. [2 ]
Flach, S. [2 ]
机构
[1] Univ Nizhniy Novgorod, Theory Oscillat Dept, Nizhnii Novgorod, Russia
[2] Max Planck Inst Phys Komplexer Syst, D-01187 Dresden, Germany
关键词
2 INTERACTING PARTICLES; COHERENT PROPAGATION; KAM TORI; MODEL; DIFFUSION; TRANSPORT; LATTICES; SYSTEMS; ABSENCE;
D O I
10.1103/PhysRevLett.107.240602
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In linear disordered systems Anderson localization makes any wave packet stay localized for all times. Its fate in nonlinear disordered systems (localization versus propagation) is under intense theoretical debate and experimental study. We resolve this dispute showing that, unlike in the common hypotheses, the answer is probabilistic rather than exclusive. At any small but finite nonlinearity (energy) value there is a finite probability for Anderson localization to break up and propagating nonlinear waves to take over. It increases with nonlinearity (energy) and reaches unity at a certain threshold, determined by the initial wave packet size. Moreover, the spreading probability stays finite also in the limit of infinite packet size at fixed total energy. These results generalize to higher dimensions as well.
引用
收藏
页数:4
相关论文
共 50 条
  • [1] Anderson localization of matter waves
    Bouyer, Philippe
    ANNALEN DER PHYSIK, 2009, 18 (12) : 844 - 848
  • [2] Anderson localization of matter waves in quantum-chaos theory
    Fratini, E.
    Pilati, S.
    PHYSICAL REVIEW A, 2015, 91 (06)
  • [3] ANDERSON LOCALIZATION OF MATTER-WAVES IN A CONTROLLED DISORDER: A QUANTUM SIMULATOR?
    Aspect, Alain
    Billy, Juliette
    Josse, Vincent
    Zuo, Zhanchun
    Cheinet, Patrick
    Bernard, Alain
    Lugan, Pierre
    Clement, David
    Sanchez-Palencia, Laurent
    Bouyer, Philippe
    LASER SPECTROSCOPY, 2010, : 3 - 18
  • [4] Anderson localization of matter waves in tailored disordered potentials
    Piraud, Marie
    Aspect, Alain
    Sanchez-Palencia, Laurent
    PHYSICAL REVIEW A, 2012, 85 (06):
  • [5] Anderson localization of matter waves in three-dimensional anisotropic disordered potentials
    Piraud, Marie
    Sanchez-Palencia, Laurent
    van Tiggelen, Bart
    PHYSICAL REVIEW A, 2014, 90 (06):
  • [6] Anderson localization of matter waves in chaotic potentials
    Cardoso, W. B.
    Avelar, A. T.
    Bazeia, D.
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2012, 13 (02) : 755 - 763
  • [7] Anderson localization and propagation of electromagnetic waves through disordered media
    Sheikhan, A.
    Abedpour, N.
    Sepehrinia, R.
    Niry, M. D.
    Tabar, M. Reza Rahimi
    Sahimi, M.
    WAVES IN RANDOM AND COMPLEX MEDIA, 2010, 20 (01) : 191 - 200
  • [8] Analytical description of the transverse Anderson localization of light
    Schirmacher, Walter
    Leonetti, Marco
    Ruocco, Giancarlo
    JOURNAL OF OPTICS, 2017, 19 (04)
  • [9] Anderson localization in nonlocal nonlinear media
    Folli, Viola
    Conti, Claudio
    OPTICS LETTERS, 2012, 37 (03) : 332 - 334
  • [10] Fifty years of Anderson localization
    Lagendijk, Ad
    van Tiggelen, Bart
    Wiersma, Diederik S.
    PHYSICS TODAY, 2009, 62 (08) : 24 - 29