CRAIG INTERPOLATION THEOREM FAILS IN BI-INTUITIONISTIC PREDICATE LOGIC

被引:1
作者
Olkhovikov, Grigory K. [1 ]
Badia, Guillermo [2 ]
机构
[1] Ruhr Univ Bochum, Dept Philosophy 1, Bochum, Germany
[2] Univ Queensland, Sch Hist & Philosoph Inquiry, Brisbane, Qld, Australia
基金
澳大利亚研究理事会;
关键词
bi-intuitionistic predicate logic; Craig Interpolation Theorem; bi-asimulation; CUT;
D O I
10.1017/S1755020322000296
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this article we show that bi-intuitionistic predicate logic lacks the Craig Interpolation Property. We proceed by adapting the counterexample given by Mints, Olkhovikov and Urquhart for intuitionistic predicate logic with constant domains [13]. More precisely, we show that there is a valid implication phi ->psi with no interpolant. Importantly, this result does not contradict the unfortunately named `Craig interpolation' theorem established by Rauszer in [24] since that article is about the property more correctly named `deductive interpolation' (see Galatos, Jipsen, Kowalski and Ono's use of this term in [5]) for global consequence. Given that the deduction theorem fails for bi-intuitionistic logic with global consequence, the two formulations of the property are not equivalent.
引用
收藏
页码:611 / 633
页数:23
相关论文
共 27 条
[1]  
[Anonymous], 1977, Studia Logica, V36, P73
[2]  
[Anonymous], 1985, Revista Colombiana de Matematicas
[3]  
Badia G, 2017, AUSTRALAS J LOG, V14, P46
[4]   Bi-Simulating in Bi-Intuitionistic Logic [J].
Badia, Guillermo .
STUDIA LOGICA, 2016, 104 (05) :1037-1050
[5]   Subtractive logic [J].
Crolard, T .
THEORETICAL COMPUTER SCIENCE, 2001, 254 (1-2) :151-185
[6]   Hennessy-Milner Properties for (Modal) Bi-intuitionistic Logic [J].
De Groot, Jim ;
Pattinson, Dirk .
LOGIC, LANGUAGE, INFORMATION, AND COMPUTATION (WOLLIC 2019), 2019, 11541 :161-176
[7]  
Galatos N., 2007, RESIDUATED LATTICES, V1st
[8]   Combining Derivations and Refutations for Cut-free Completeness in Bi-intuitionistic Logic [J].
Gore, Rajeev ;
Postniece, Linda .
JOURNAL OF LOGIC AND COMPUTATION, 2010, 20 (01) :233-260
[9]  
Gore Rajeev., 2020, Advances in Modal Logic, V13, P269
[10]  
Klemke D., 1971, Archiv fur Mathematische Logik und Grundlagenforschung, V14, P148, DOI 10.1007/BF01991851