Quantum algorithms for classical lattice models

被引:27
|
作者
De las Cuevas, G. [1 ,2 ]
Duer, W. [1 ]
Van den Nest, M. [3 ]
Martin-Delgado, M. A. [4 ]
机构
[1] Univ Innsbruck, Inst Theoret Phys, A-6020 Innsbruck, Austria
[2] Austrian Acad Sci, Inst Quantenopt & Quanteninformat, Innsbruck, Austria
[3] Max Planck Inst Quantum Opt, D-85748 Garching, Germany
[4] Univ Complutense, Dept Fis Teor 1, E-28040 Madrid, Spain
来源
NEW JOURNAL OF PHYSICS | 2011年 / 13卷
关键词
COMPUTATIONAL-COMPLEXITY; PARTITION-FUNCTION;
D O I
10.1088/1367-2630/13/9/093021
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We give efficient quantum algorithms to estimate the partition function of (i) the six-vertex model on a two-dimensional (2D) square lattice, (ii) the Ising model with magnetic fields on a planar graph, (iii) the Potts model on a quasi-2D square lattice and (iv) the Z(2) lattice gauge theory on a 3D square lattice. Moreover, we prove that these problems are BQP-complete, that is, that estimating these partition functions is as hard as simulating arbitrary quantum computation. The results are proven for a complex parameter regime of the models. The proofs are based on a mapping relating partition functions to quantum circuits introduced by Van den Nest et al (2009 Phys. Rev. A 80 052334) and extended here.
引用
收藏
页数:35
相关论文
共 50 条
  • [1] Classical limits of euclidean Gibbs states for quantum lattice models
    Albeverio, S
    Kondratiev, Y
    Kozitsky, Y
    LETTERS IN MATHEMATICAL PHYSICS, 1999, 48 (03) : 221 - 233
  • [2] Classical Limits of Euclidean Gibbs States for Quantum Lattice Models
    Sergio Albeverio
    Yuri Kondratiev
    Yuri Kozitsky
    Letters in Mathematical Physics, 1999, 48 : 221 - 233
  • [3] Classical Logic and Quantum Logic with Multiple and Common Lattice Models
    Pavicic, Mladen
    ADVANCES IN MATHEMATICAL PHYSICS, 2016, 2016
  • [4] Comparative study on compact quantum circuits of hybrid quantum-classical algorithms for quantum impurity models
    Sakurai, Rihito
    Backhouse, Oliver J.
    Booth, George H.
    Mizukami, Wataru
    Shinaoka, Hiroshi
    PHYSICAL REVIEW RESEARCH, 2024, 6 (02):
  • [5] QUANTUM-MECHANICAL FOUNDATION OF CLASSICAL SHELL MODELS IN LATTICE-DYNAMICS
    NIEDERMANN, HP
    WAGNER, M
    PHYSICA STATUS SOLIDI B-BASIC RESEARCH, 1976, 78 (02): : 615 - 624
  • [6] CLASSICAL INTEGRABLE LATTICE MODELS THROUGH QUANTUM GROUP-RELATED FORMALISM
    KUNDU, A
    THEORETICAL AND MATHEMATICAL PHYSICS, 1994, 99 (03) : 699 - 704
  • [7] Quantum mean-field approximation for lattice quantum models: Truncating quantum correlations and retaining classical ones
    Malpetti, Daniele
    Roscilde, Tommaso
    PHYSICAL REVIEW B, 2017, 95 (07)
  • [8] Exponentially improved classical and quantum algorithms for three-body Ising models
    Van den Nest, M.
    Duer, W.
    PHYSICAL REVIEW A, 2014, 89 (01):
  • [9] Quantum and classical localization and the Manhattan lattice
    Beamond, EJ
    Owczarek, AL
    Cardy, J
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2003, 36 (41): : 10251 - 10267
  • [10] Classical algorithms for quantum mean values
    Bravyi, Sergey
    Gosset, David
    Movassagh, Ramis
    NATURE PHYSICS, 2021, 17 (03) : 337 - +