Mechanical properties and tribological behaviour of silicon carbide/carbon nanofibers nanocomposites

被引:1
作者
Borrell, A. [1 ]
Torrecillas, R. [1 ]
Rocha, V. G. [2 ]
Fernandez, A. [2 ]
Bonache, V. [3 ]
Salvador, M. D. [3 ]
机构
[1] Univ Oviedo, CSIC, CINN, Llanera 33428, Asturias, Spain
[2] ITMA Mat Technol, Llanera 33428, Asturias, Spain
[3] Univ Politecn Valencia, ITM, Valencia 46022, Spain
来源
BOLETIN DE LA SOCIEDAD ESPANOLA DE CERAMICA Y VIDRIO | 2011年 / 50卷 / 03期
关键词
Carbon nanofibers/silicon carbide nanocomposites; Spark plasma sintering; Mechanical properties; Tribology; Wear; CARBON NANOFIBERS; LOW-TEMPERATURE;
D O I
10.3989/cyv.152011
中图分类号
TQ174 [陶瓷工业]; TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
The development of new ceramic/carbon nanostructured materials is a very interesting option from the point of view of the automotive and aerospace industries. Its low density, high mechanical strength, high oxidation resistance and excellent friction behavior allows the use of these composites as functional materials. The aim of this study was to evaluate the influence of carbon nanofibers (CNFs) on the mechanical and tribological behavior of silicon carbide/CNFs nanocomposite obtained by spark plasma sintering technique. The tribological study was carried out in a ball-on-disk apparatus under dry sliding conditions (dry friction) and a fixed load of 15 N. The friction coefficient and wear rate were measured for each composite. Scanning electron microscope was used to analyze wear surface formed. The results show simultaneous improvement of wear behavior and mechanical properties of ceramic materials by incorporating of carbon nanofibers.
引用
收藏
页码:109 / 116
页数:8
相关论文
共 22 条
[1]   Fast low-temperature consolidation of bulk nanometric ceramic materials [J].
Anselmi-Tamburini, U ;
Garay, JE ;
Munir, ZA .
SCRIPTA MATERIALIA, 2006, 54 (05) :823-828
[2]  
*ASTM, 1996, STM ANN BOOK STAND
[3]  
Blakely KA, 2006, AM CERAM SOC BULL, V85, P30
[4]   Surface coating on carbon nanofibers with alumina precursor by different synthesis routes [J].
Borrell, A. ;
Rocha, V. G. ;
Torrecillas, R. ;
Fernandez, A. .
COMPOSITES SCIENCE AND TECHNOLOGY, 2011, 71 (01) :18-22
[5]   Improvement of Carbon Nanofibers/ZrO2 Composites Properties with a Zirconia Nanocoating on Carbon Nanofibers by Sol-Gel Method [J].
Borrell, Amparo ;
Rocha, Victoria G. ;
Torrecillas, Ramon ;
Fernandez, Adolfo .
JOURNAL OF THE AMERICAN CERAMIC SOCIETY, 2011, 94 (07) :2048-2052
[6]   High density carbon materials obtained at relatively low temperature by spark plasma sintering of carbon nanofibers [J].
Borrell, Amparo ;
Fernandez, Adolfo ;
Merino, Cesar ;
Torrecillas, Ramon .
INTERNATIONAL JOURNAL OF MATERIALS RESEARCH, 2010, 101 (01) :112-116
[7]   Carbon nanofibers and single-walled carbon nanotubes prepared by the floating catalyst method [J].
Ci, LJ ;
Wei, JQ ;
Wei, BQ ;
Liang, J ;
Xu, CL ;
Wu, DH .
CARBON, 2001, 39 (03) :329-335
[8]   MICROSTRUCTURE AND MECHANICAL-PROPERTIES OF HOT-PRESSED SIC-TIC COMPOSITES [J].
ENDO, H ;
UEKI, M ;
KUBO, H .
JOURNAL OF MATERIALS SCIENCE, 1991, 26 (14) :3769-3774
[9]   Influence of sintering activators on structure of silicon carbide [J].
Ermer, E ;
Wieslsaw, P ;
Ludoslsaw, S .
SOLID STATE IONICS, 2001, 141 :523-528
[10]   Mechanical properties of simultaneously synthesized and consolidated carbon nanofiber (CNF)-dispersed SiC composites by pulsed electric-current pressure sintering [J].
Hirota, Ken ;
Hara, Hiroaki ;
Kato, Masaki .
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2007, 458 (1-2) :216-225