A Fubini Theorem in Riesz spaces for the Kurzweil-Henstock Integral

被引:6
作者
Boccuto, A. [1 ]
Candeloro, D. [1 ]
Sambucini, A. R. [1 ]
机构
[1] Dipartimento Matemat & Informat, I-06123 Perugia, Italy
来源
JOURNAL OF FUNCTION SPACES AND APPLICATIONS | 2011年 / 9卷 / 03期
关键词
Riesz space; Kurzweil-Henstock integral; Fubini theorem;
D O I
10.1155/2011/158412
中图分类号
学科分类号
摘要
A Fubini-type theorem is proved, for the Kurzweil-Henstock integral of Riesz-space-valued functions defined on (not necessarily bounded) subrectangles of the "extended" real plane.
引用
收藏
页码:283 / 304
页数:22
相关论文
共 34 条
[31]   The Ito integral and near-martingales in Riesz spaces [J].
Divandar, Mahin Sadat ;
Sadeghi, Ghadir .
COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2023, 52 (14) :5068-5081
[32]   The Egoroff theorem for non-additive measures in Riesz spaces [J].
Kawabe, Jun .
FUZZY SETS AND SYSTEMS, 2006, 157 (20) :2762-2770
[33]   A fixed point theorem and the Hyers-Ulam stability in Riesz spaces [J].
Bogdan Batko ;
Janusz Brzdęk .
Advances in Difference Equations, 2013
[34]   A fixed point theorem and the Hyers-Ulam stability in Riesz spaces [J].
Batko, Bogdan ;
Brzdek, Janusz .
ADVANCES IN DIFFERENCE EQUATIONS, 2013,