Nanoparticle-Mediated Measurement of Target-Drug Binding in Cancer Cells

被引:17
作者
Ullal, Adeeti V. [1 ,2 ]
Reiner, Thomas [1 ]
Yang, Katherine S. [1 ]
Gorbatov, Rostic [1 ]
Min, Changwook [1 ]
Issadore, David [1 ]
Lee, Hakho [1 ]
Weissleder, Ralph [1 ,3 ]
机构
[1] Massachusetts Gen Hosp, Ctr Syst Biol, Boston, MA 02114 USA
[2] MIT, Harvard MIT Div Hlth Sci & Technol, Cambridge, MA 02139 USA
[3] Harvard Univ, Sch Med, Dept Syst Biol, Boston, MA 02115 USA
基金
美国国家卫生研究院;
关键词
nanoparticles; targeting; NMR; DMR; cancer; drugs; PARP; DIPHOSPHATE-RIBOSE) POLYMERASE EXPRESSION; INHIBITORS; PROTEINS; PARP-1;
D O I
10.1021/nn203450p
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Responses to molecularly targeted therapies can be highly variable and depend on mutations, fluctuations in target protein levels In individual cells, and drug delivery. The ability to rapidly quantitate drug response in cells harvested from patients in a point-of-care setting would have far reaching Implications. Capitalizing on recent developments with miniaturized NMR technologies, we have developed a magnetic nanoparticle-based approach to directly measure both target expression and drug binding In scant human cells. The method involves covalent conjugation of the small-molecule drug to a magnetic nanoparticle that Is then used as a read-out for target expression and drug-binding affinity. Using poly(ADP-ribose) polymerase (PARP) inhibition as a model system, we developed an approach to distinguish differential expression of PARP in scant cells with excellent correlation to gold standards, the ability to mimic drug pharmacodynamics ex vivo through competitive target drug binding, and the potential to perform such measurements In clinical samples.
引用
收藏
页码:9216 / 9224
页数:9
相关论文
共 39 条
[1]   The molecular architecture of the nuclear pore complex [J].
Alber, Frank ;
Dokudovskaya, Svetlana ;
Veenhoff, Liesbeth M. ;
Zhang, Wenzhu ;
Kipper, Julia ;
Devos, Damien ;
Suprapto, Adisetyantari ;
Karni-Schmidt, Orit ;
Williams, Rosemary ;
Chait, Brian T. ;
Sali, Andrej ;
Rout, Michael P. .
NATURE, 2007, 450 (7170) :695-701
[2]  
Brustmann H, 2007, INT J GYNECOL PATHOL, V26, P147, DOI 10.1097/01.pgp.0000235064.93182.ec
[3]   Bioorthogonal Probes for Polo-like Kinase 1 Imaging and Quantification [J].
Budin, Ghyslain ;
Yang, Katherine S. ;
Reiner, Thomas ;
Weissleder, Ralph .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2011, 50 (40) :9378-9381
[4]   Nanotechnologies for biomolecular detection and medical diagnostics [J].
Cheng, MMC ;
Cuda, G ;
Bunimovich, YL ;
Gaspari, M ;
Heath, JR ;
Hill, HD ;
Mirkin, CA ;
Nijdam, AJ ;
Terracciano, R ;
Thundat, T ;
Ferrari, M .
CURRENT OPINION IN CHEMICAL BIOLOGY, 2006, 10 (01) :11-19
[5]   PTEN Deficiency in Endometrioid Endometrial Adenocarcinomas Predicts Sensitivity to PARP Inhibitors [J].
Dedes, Konstantin J. ;
Wetterskog, Daniel ;
Mendes-Pereira, Ana M. ;
Natrajan, Rachael ;
Lambros, Maryou B. ;
Geyer, Felipe C. ;
Vatcheva, Radost ;
Savage, Kay ;
Mackay, Alan ;
Lord, Christopher J. ;
Ashworth, Alan ;
Reis-Filho, Jorge S. .
SCIENCE TRANSLATIONAL MEDICINE, 2010, 2 (53)
[6]  
Devaraj NK, 2010, ANGEW CHEM, V122, P2931
[7]   Integrated barcode chips for rapid, multiplexed analysis of proteins in microliter quantities of blood [J].
Fan, Rong ;
Vermesh, Ophir ;
Srivastava, Alok ;
Yen, Brian K. H. ;
Qin, Lidong ;
Ahmad, Habib ;
Kwong, Gabriel A. ;
Liu, Chao-Chao ;
Gould, Juliane ;
Hood, Leroy ;
Heath, James R. .
NATURE BIOTECHNOLOGY, 2008, 26 (12) :1373-1378
[8]   Evolution of Poly(ADP-ribose) Polymerase-1 (PARP-1) Inhibitors. From Concept to Clinic [J].
Ferraris, Dana V. .
JOURNAL OF MEDICINAL CHEMISTRY, 2010, 53 (12) :4561-4584
[9]   Drivers of biodiagnostic development [J].
Giljohann, David A. ;
Mirkin, Chad A. .
NATURE, 2009, 462 (7272) :461-464
[10]   PARP1-dependent kinetics of recruitment of MRE11 and NBS1 proteins to multiple DNA damage sites [J].
Haince, Jean-Francois ;
McDonald, Darin ;
Rodrigue, Amelie ;
Dery, Ugo ;
Masson, Jean-Yves ;
Hendzel, Michael J. ;
Poirier, Guy G. .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2008, 283 (02) :1197-1208