New Deterministic Approximation Algorithms for Fully Dynamic Matching

被引:53
作者
Bhattacharya, Sayan [1 ]
Henzinger, Monika [2 ]
Nanongkai, Danupon [3 ]
机构
[1] IMSc, Madras, Tamil Nadu, India
[2] Univ Vienna, Vienna, Austria
[3] KTH, Stockholm, Sweden
来源
STOC'16: PROCEEDINGS OF THE 48TH ANNUAL ACM SIGACT SYMPOSIUM ON THEORY OF COMPUTING | 2016年
基金
瑞典研究理事会; 欧洲研究理事会;
关键词
Data Structures; Dynamic Graph Algorithms;
D O I
10.1145/2897518.2897568
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We present two deterministic dynamic algorithms for the maximum matching problem. (1) An algorithm that maintains a (2 + epsilon)-approximate maximum matching in general graphs with O (poly(log n, 1/epsilon) update time. (2) An algorithm that maintains an al( approximation of the value of the maximum matching with 0(n(2)/K) update time in bipartite graphs, for every sufficiently large constant positive integer K. Here, 1 <= alpha(K) < 2 is a constant determined by the value of K. Result (1) is the first deterministic algorithm that can maintain an o(log n)-approximate maximum matching with polylogarithmic update time, improving the seminal result of Onak et al. [STOC 2010]. Its approximation guarantee almost matches the guarantee of the best randomized polylogarithmic update time algorithm [Baswana et al. FOGS 2011]. Result (2) achieves a better-than-two approximation with arbitrarily small polynomial update time on bipartite graphs. Previously the best update time for this problem was 0(m(1/4)) [Bernstein et al. ICALP 2015], where m is the current number of edges in the graph.
引用
收藏
页码:398 / 411
页数:14
相关论文
共 17 条
[1]  
Abboud A., 2014, FOCS
[2]  
Baswana S., 2011, FOCS
[3]  
Bernstein A., 2015, ICALP
[4]  
Bernstein Aaron, 2016, SODA
[5]  
Bhattacharya S., 2014, CORR
[6]  
Crouch M., 2014, APPROX RANDOM
[7]  
Gupta M., 2013, FOCS
[8]  
Henzinger M., 2015, STOC
[9]   AN IMPROVED PARALLEL ALGORITHM FOR MAXIMAL MATCHING [J].
ISRAELI, A ;
SHILOACH, Y .
INFORMATION PROCESSING LETTERS, 1986, 22 (02) :57-60
[10]  
Konrad C., 2012, APPROX RANDOM