Arnold-type invariants of curves on surfaces

被引:3
作者
Tchernov, V [1 ]
机构
[1] Inst Matemat, S-75106 Uppsala, Sweden
关键词
immersion; curve; finite order invariant;
D O I
10.1142/S0218216599000079
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Recently V. Arnold introduced Strangeness and J+/- invariants of generic immersions of an oriented circle to R-2. Here these invariants are generalized to the case of generic immersions of an oriented circle to an arbitrary surface F. We explicitly describe all the invariants satisfying axioms, which naturally generalize the axioms used by V. Arnold.
引用
收藏
页码:71 / 97
页数:27
相关论文
共 11 条
[1]  
AICARDI F, 1996, J KNOT TH RAMIF, V15, P743
[2]  
[Anonymous], 1992, RIEMANNIAN GEOMETRY
[3]  
Arnold V. I., 1994, ADV SOV MATH, V21, P39
[4]  
Arnold V. I., 1995, P STEKLOV I MATH, V209, P11
[5]  
Gromov M, 1986, PARTIAL DIFFERENTIAL
[6]  
HANSEN VL, 1974, COMPOS MATH, V28, P33
[7]  
INSHAKOV AV, 1998, IN PRESS FUNCT ANAL
[8]  
TCHERNOV V, 1997, ARNOLD TYPE INVARIAN, P21
[9]  
TCHERNOV V, 1997, STRANGENESS J PLUS M, P14
[10]  
TCHERNOV V, 1998, UPPSALA DISSERT MATH, V10