Imaging Cancer Angiogenesis and Metastasis in a Zebrafish Embryo Model

被引:26
作者
Tulotta, C. [1 ]
He, S. [1 ]
van der Ent, W. [1 ]
Chen, L. [1 ]
Groenewoud, A. [1 ]
Spaink, H. P. [1 ]
Snaar-Jagalska, B. E. [1 ]
机构
[1] Leiden Univ, Inst Biol, Einsteinweg 55, NL-2333 CC Leiden, Netherlands
来源
CANCER AND ZEBRAFISH: MECHANISMS, TECHNIQUES, AND MODELS | 2016年 / 916卷
关键词
Angiogenesis; Extravasation; Metastasis; Tumor inflammation; In vivo imaging; EPITHELIAL-MESENCHYMAL-TRANSITION; TUMOR-CELL INTRAVASATION; IN-VIVO; TRANSGENIC ZEBRAFISH; DANIO-RERIO; CHORIOALLANTOIC MEMBRANE; VASCULAR DEVELOPMENT; EXPOSURE ROUTES; GROWTH; MECHANISM;
D O I
10.1007/978-3-319-30654-4_11
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Tumor angiogenesis and metastasis are key steps of cancer progression. In vitro and animal model studies have contributed to partially elucidating the mechanisms involved in these processes and in developing therapies. Besides the improvements in fundamental research and the optimization of therapeutic regimes, cancer still remains a major health threatening condition and therefore the development of new models is needed. The zebrafish is a powerful tool to study tumor angiogenesis and metastasis, because it allows the visualization of fluorescently labelled tumor cells inducing vessel remodeling, disseminating and invading surrounding tissues in a whole transparent embryo. The embryo model has also been used to address the contribution of the tumor stroma in sustaining tumor angiogenesis and spreading. Simultaneously, new anti-angiogenic drugs and compounds affecting malignant cell survival and migration can be tested by simply adding the compound into the water of living embryos. Therefore the zebrafish model offers the opportunity to gain more knowledge on cancer angiogenesis and metastasis in vivo with the final aim of providing new translational insights into therapeutic approaches to help patients.
引用
收藏
页码:239 / 263
页数:25
相关论文
共 97 条
  • [11] Angiogenesis in cancer and other diseases
    Carmeliet, P
    Jain, RK
    [J]. NATURE, 2000, 407 (6801) : 249 - 257
  • [12] Heterogeneous Tumor Subpopulations Cooperate to Drive Invasion
    Chapman, Anna
    del Ama, Laura Fernandez
    Ferguson, Jennifer
    Kamarashev, Jivko
    Wellbrock, Claudia
    Hurlstone, Adam
    [J]. CELL REPORTS, 2014, 8 (03): : 688 - 695
  • [13] Zebrafish Blood Stem Cells
    Chen, Aye T.
    Zon, Leonard I.
    [J]. JOURNAL OF CELLULAR BIOCHEMISTRY, 2009, 108 (01) : 35 - 42
  • [14] Clinical implications of cancer self-seeding
    Comen, Elizabeth
    Norton, Larry
    Massague, Joan
    [J]. NATURE REVIEWS CLINICAL ONCOLOGY, 2011, 8 (06) : 369 - 377
  • [15] Dual Roles for Rac2 in Neutrophil Motility and Active Retention in Zebrafish Hematopoietic Tissue
    Deng, Qing
    Yoo, Sa Kan
    Cavnar, Peter J.
    Green, Julie M.
    Huttenlocher, Anna
    [J]. DEVELOPMENTAL CELL, 2011, 21 (04) : 735 - 745
  • [16] Transforming growth factor-β signalling controls human breast cancer metastasis in a zebrafish xenograft model
    Drabsch, Yvette
    He, Shuning
    Zhang, Long
    Snaar-Jagalska, B. Ewa
    ten Dijke, Peter
    [J]. BREAST CANCER RESEARCH, 2013, 15 (06)
  • [17] Eden CJ, 2014, ONCOGENE
  • [18] mpeg1 promoter transgenes direct macrophage-lineage expression in zebrafish
    Ellett, Felix
    Pase, Luke
    Hayman, John W.
    Andrianopoulos, Alex
    Lieschke, Graham J.
    [J]. BLOOD, 2011, 117 (04) : E49 - E56
  • [19] Nanotechnological carriers for cancer chemotherapy: The state of the art
    Estanqueiro, Marilene
    Amaral, Maria Helena
    Conceicao, Jaime
    Sousa Lobo, Jose Manuel
    [J]. COLLOIDS AND SURFACES B-BIOINTERFACES, 2015, 126 : 631 - 648
  • [20] Caught in the act: revealing the metastatic process by live imaging
    Fein, Miriam R.
    Egeblad, Mikala
    [J]. DISEASE MODELS & MECHANISMS, 2013, 6 (03) : 580 - 593