Quasiballistic Thermal Transport from Nanoscale Heaters and the Role of the Spatial Frequency

被引:14
作者
Chen, Xiangwen [1 ]
Hua, Chengyun [2 ]
Zhang, Hang [3 ]
Ravichandran, Navaneetha K. [4 ]
Minnich, Austin J. [1 ]
机构
[1] CALTECH, Div Engn & Appl Sci, Pasadena, CA 91125 USA
[2] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA
[3] Chinese Acad Sci, Inst Engn Thermophys, Beijing 100190, Peoples R China
[4] Boston Coll, Dept Phys, Chestnut Hill, MA 02467 USA
来源
PHYSICAL REVIEW APPLIED | 2018年 / 10卷 / 05期
基金
美国国家科学基金会;
关键词
THERMOELECTRICS; CONDUCTIVITY; PERFORMANCE; DISSIPATION;
D O I
10.1103/PhysRevApplied.10.054068
中图分类号
O59 [应用物理学];
学科分类号
摘要
Quasiballistic heat conduction from nanoscale heat sources of size comparable to phonon mean free paths has recently become of intense interest both scientifically and for its applications. Prior work has established that, in the quasiballistic regime, the apparent thermal properties of materials depend both on intrinsic mechanisms and the characteristics of the applied thermal gradient. However, many aspects of this regime remain poorly understood. Here, we experimentally study the thermal response of crystals to large thermal gradients generated by optical heating of nanoline arrays. Our experiments reveal the key role of the spatial frequencies and Fourier series amplitudes of the heating profile for thermal transport in the quasiballistic regime, in contrast to the conventional picture that focuses on the geometric dimensions of the individual heaters. Our work provides the insight needed to rationally mitigate local hot spots in modern applications by manipulating the spatial frequencies of the heater patterns.
引用
收藏
页数:11
相关论文
共 43 条
[1]   High-performance bulk thermoelectrics with all-scale hierarchical architectures [J].
Biswas, Kanishka ;
He, Jiaqing ;
Blum, Ivan D. ;
Wu, Chun-I ;
Hogan, Timothy P. ;
Seidman, David N. ;
Dravid, Vinayak P. ;
Kanatzidis, Mercouri G. .
NATURE, 2012, 489 (7416) :414-418
[2]   Nanoscale thermal transport. II. 2003-2012 [J].
Cahill, David G. ;
Braun, Paul V. ;
Chen, Gang ;
Clarke, David R. ;
Fan, Shanhui ;
Goodson, Kenneth E. ;
Keblinski, Pawel ;
King, William P. ;
Mahan, Gerald D. ;
Majumdar, Arun ;
Maris, Humphrey J. ;
Phillpot, Simon R. ;
Pop, Eric ;
Shi, Li .
APPLIED PHYSICS REVIEWS, 2014, 1 (01)
[3]   Analysis of heat flow in layered structures for time-domain thermoreflectance [J].
Cahill, DG .
REVIEW OF SCIENTIFIC INSTRUMENTS, 2004, 75 (12) :5119-5122
[4]   Thermal conductivity of κ-Al2O3 and α-Al2O3 wear-resistant coatings [J].
Cahill, DG ;
Lee, SM ;
Selinder, TI .
JOURNAL OF APPLIED PHYSICS, 1998, 83 (11) :5783-5786
[5]   Radial quasiballistic transport in time-domain thermoreflectance studied using Monte Carlo simulations [J].
Ding, D. ;
Chen, X. ;
Minnich, A. J. .
APPLIED PHYSICS LETTERS, 2014, 104 (14)
[6]   Heat transport in silicon from first-principles calculations [J].
Esfarjani, Keivan ;
Chen, Gang ;
Stokes, Harold T. .
PHYSICAL REVIEW B, 2011, 84 (08)
[7]   A new regime of nanoscale thermal transport: Collective diffusion increases dissipation efficiency [J].
Hoogeboom-Pot, Kathleen M. ;
Hernandez-Charpak, Jorge N. ;
Gu, Xiaokun ;
Frazer, Travis D. ;
Anderson, Erik H. ;
Chao, Weilun ;
Falcone, Roger W. ;
Yang, Ronggui ;
Murnane, Margaret M. ;
Kapteyn, Henry C. ;
Nardi, Damiano .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2015, 112 (16) :4846-4851
[8]  
Hu YJ, 2015, NAT NANOTECHNOL, V10, P701, DOI [10.1038/NNANO.2015.109, 10.1038/nnano.2015.109]
[9]   Experimental metrology to obtain thermal phonon transmission coefficients at solid interfaces [J].
Hua, Chengyun ;
Chen, Xiangwen ;
Ravichandran, Navaneetha K. ;
Minnich, Austin J. .
PHYSICAL REVIEW B, 2017, 95 (20)
[10]   Semi-analytical solution to the frequency-dependent Boltzmann transport equation for cross-plane heat conduction in thin films [J].
Hua, Chengyun ;
Minnich, Austin J. .
JOURNAL OF APPLIED PHYSICS, 2015, 117 (17)