Constructive methods for spectra with three nonzero elements in the nonnegative inverse eigenvalue problem

被引:3
作者
Cronin, Anthony G. [1 ]
机构
[1] Univ Coll Dublin, Sch Math & Stat, Dublin, Ireland
关键词
Nonnegative matrices; inverse eigenvalue problem; spectral theory; MATRICES;
D O I
10.1080/03081087.2017.1301361
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We present and compare three constructive methods for realizing nonreal spectra with three nonzero elements in the nonnegative inverse eigenvalue problem. We also provide some necessary conditions for realizability and numerical examples. In particular, we utilize the companion matrix.
引用
收藏
页码:435 / 446
页数:12
相关论文
共 12 条
[1]  
Bermudez A. J., 1994, SAVMA Symposium 1994 Proceedings., P1
[2]   THE SPECTRA OF NONNEGATIVE MATRICES VIA SYMBOLIC DYNAMICS [J].
BOYLE, M ;
HANDELMAN, D .
ANNALS OF MATHEMATICS, 1991, 133 (02) :249-316
[3]  
Johnson C.R., 1981, Linear Multilinear Algebra, V10, P113, DOI DOI 10.1080/03081088108817402
[4]   The spectra of nonnegative integer matrices via formal power series [J].
Kim, KH ;
Ormes, NS ;
Roush, FW .
JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 2000, 13 (04) :773-806
[5]   Nonnegative realization of spectra having negative real parts [J].
Laffey, Thomas J. ;
Smigoc, Helena .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2006, 416 (01) :148-159
[6]   Power series with positive coefficients arising from the characteristic polynomials of positive matrices [J].
Laffey, Thomas J. ;
Loewy, Raphael ;
Smigoc, Helena .
MATHEMATISCHE ANNALEN, 2016, 364 (1-2) :687-707
[7]   A constructive version of the Boyle-Handelman theorem on the spectra of nonnegative matrices [J].
Laffey, Thomas J. .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2012, 436 (06) :1701-1709
[8]   Nonnegatively realizable spectra with two positive eigenvalues [J].
Laffey, Thomas J. ;
Smigoc, Helena .
LINEAR & MULTILINEAR ALGEBRA, 2010, 58 (08) :1053-1069
[9]  
Laffey ThomasJ., 1999, MATRICES GROUP REPRE, V19, P21
[10]  
Loewy R., 1978, Linear and Multilinear Algebra, V6, P83, DOI DOI 10.1080/03081087808817226