A Novel Weighted Support Vector Machine Based on Particle Swarm Optimization for Gene Selection and Tumor Classification

被引:41
作者
Abdi, Mohammad Javad [1 ]
Hosseini, Seyed Mohammad [1 ]
Rezghi, Mansoor [2 ]
机构
[1] Tarbiat Modares Univ, Fac Math Sci, Dept Comp Sci, Tehran, Iran
[2] Sahand Univ Technol, Dept Appl Math, Tabriz, Iran
关键词
CANCER; PREDICTION;
D O I
10.1155/2012/320698
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
We develop a detection model based on support vector machines (SVMs) and particle swarm optimization (PSO) for gene selection and tumor classification problems. The proposed model consists of two stages: first, the well-known minimum redundancy-maximum relevance (mRMR) method is applied to preselect genes that have the highest relevance with the target class and are maximally dissimilar to each other. Then, PSO is proposed to form a novel weighted SVM (WSVM) to classify samples. In this WSVM, PSO not only discards redundant genes, but also especially takes into account the degree of importance of each gene and assigns diverse weights to the different genes. We also use PSO to find appropriate kernel parameters since the choice of gene weights influences the optimal kernel parameters and vice versa. Experimental results show that the proposed mRMR-PSO-WSVM model achieves highest classification accuracy on two popular leukemia and colon gene expression datasets obtained from DNA microarrays. Therefore, we can conclude that our proposed method is very promising compared to the previously reported results.
引用
收藏
页数:7
相关论文
共 25 条
[1]  
Abdi M.J., 2010, Int. J. Inf. Sci. Comput. Math, V2, P129
[2]  
Abdi M. J., ENG APPL ARTIFICIAL
[3]   Broad patterns of gene expression revealed by clustering analysis of tumor and normal colon tissues probed by oligonucleotide arrays [J].
Alon, U ;
Barkai, N ;
Notterman, DA ;
Gish, K ;
Ybarra, S ;
Mack, D ;
Levine, AJ .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1999, 96 (12) :6745-6750
[4]   Knowledge-based analysis of microarray gene expression data by using support vector machines [J].
Brown, MPS ;
Grundy, WN ;
Lin, D ;
Cristianini, N ;
Sugnet, CW ;
Furey, TS ;
Ares, M ;
Haussler, D .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2000, 97 (01) :262-267
[5]   Comparison of support vector machine and artificial neural network systems for drug/nondrug classification [J].
Byvatov, E ;
Fechner, U ;
Sadowski, J ;
Schneider, G .
JOURNAL OF CHEMICAL INFORMATION AND COMPUTER SCIENCES, 2003, 43 (06) :1882-1889
[6]   Protein function classification via support vector machine approach [J].
Cai, CZ ;
Wang, WL ;
Sun, LZ ;
Chen, YZ .
MATHEMATICAL BIOSCIENCES, 2003, 185 (02) :111-122
[7]   Improved binary PSO for feature selection using gene expression data [J].
Chuang, Li-Yeh ;
Chang, Hsueh-Wei ;
Tu, Chung-Jui ;
Yang, Cheng-Hong .
COMPUTATIONAL BIOLOGY AND CHEMISTRY, 2008, 32 (01) :29-38
[8]   A two-stage gene selection scheme utilizing MRMR filter and GA wrapper [J].
El Akadi, Ali ;
Amine, Aouatif ;
El Ouardighi, Abdeljalil ;
Aboutajdine, Driss .
KNOWLEDGE AND INFORMATION SYSTEMS, 2011, 26 (03) :487-500
[9]   Molecular classification of cancer: Class discovery and class prediction by gene expression monitoring [J].
Golub, TR ;
Slonim, DK ;
Tamayo, P ;
Huard, C ;
Gaasenbeek, M ;
Mesirov, JP ;
Coller, H ;
Loh, ML ;
Downing, JR ;
Caligiuri, MA ;
Bloomfield, CD ;
Lander, ES .
SCIENCE, 1999, 286 (5439) :531-537
[10]   Gene selection for cancer classification using support vector machines [J].
Guyon, I ;
Weston, J ;
Barnhill, S ;
Vapnik, V .
MACHINE LEARNING, 2002, 46 (1-3) :389-422