Fundamental limits of quantum error mitigation

被引:71
作者
Takagi, Ryuji [1 ]
Endo, Suguru [2 ]
Minagawa, Shintaro [3 ]
Gu, Mile [1 ,4 ]
机构
[1] Nanyang Technol Univ, Sch Phys & Math Sci, Nanyang Quantum Hub, Singapore 637371, Singapore
[2] NTT Corp, NTT Comp & Data Sci Labs, Musashino, Tokyo 1808585, Japan
[3] Nagoya Univ, Grad Sch Informat, Chikusa Ku, Nagoya, Aichi 4648601, Japan
[4] Natl Univ Singapore, Ctr Quantum Technol, 3 Sci Dr 2, Singapore 117543, Singapore
基金
新加坡国家研究基金会;
关键词
D O I
10.1038/s41534-022-00618-z
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The inevitable accumulation of errors in near-future quantum devices represents a key obstacle in delivering practical quantum advantages, motivating the development of various quantum error-mitigation methods. Here, we derive fundamental bounds concerning how error-mitigation algorithms can reduce the computation error as a function of their sampling overhead. Our bounds place universal performance limits on a general error-mitigation protocol class. We use them to show (1) that the sampling overhead that ensures a certain computational accuracy for mitigating local depolarizing noise in layered circuits scales exponentially with the circuit depth for general error-mitigation protocols and (2) the optimality of probabilistic error cancellation among a wide class of strategies in mitigating the local dephasing noise on an arbitrary number of qubits. Our results provide a means to identify when a given quantum error-mitigation strategy is optimal and when there is potential room for improvement.
引用
收藏
页数:11
相关论文
共 69 条
[1]  
[Anonymous], 1824, REFLECTIONS MOTIVE P
[2]   Quantum supremacy using a programmable superconducting processor [J].
Arute, Frank ;
Arya, Kunal ;
Babbush, Ryan ;
Bacon, Dave ;
Bardin, Joseph C. ;
Barends, Rami ;
Biswas, Rupak ;
Boixo, Sergio ;
Brandao, Fernando G. S. L. ;
Buell, David A. ;
Burkett, Brian ;
Chen, Yu ;
Chen, Zijun ;
Chiaro, Ben ;
Collins, Roberto ;
Courtney, William ;
Dunsworth, Andrew ;
Farhi, Edward ;
Foxen, Brooks ;
Fowler, Austin ;
Gidney, Craig ;
Giustina, Marissa ;
Graff, Rob ;
Guerin, Keith ;
Habegger, Steve ;
Harrigan, Matthew P. ;
Hartmann, Michael J. ;
Ho, Alan ;
Hoffmann, Markus ;
Huang, Trent ;
Humble, Travis S. ;
Isakov, Sergei V. ;
Jeffrey, Evan ;
Jiang, Zhang ;
Kafri, Dvir ;
Kechedzhi, Kostyantyn ;
Kelly, Julian ;
Klimov, Paul V. ;
Knysh, Sergey ;
Korotkov, Alexander ;
Kostritsa, Fedor ;
Landhuis, David ;
Lindmark, Mike ;
Lucero, Erik ;
Lyakh, Dmitry ;
Mandra, Salvatore ;
McClean, Jarrod R. ;
McEwen, Matthew ;
Megrant, Anthony ;
Mi, Xiao .
NATURE, 2019, 574 (7779) :505-+
[3]   Asymptotic error rates in quantum hypothesis testing [J].
Audenaert, K. M. R. ;
Nussbaum, M. ;
Szkola, A. ;
Verstraete, F. .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2008, 279 (01) :251-283
[4]   Efficient quantum circuits for Schur and Clebsch-Gordan transforms [J].
Bacon, Dave ;
Chuang, Isaac L. ;
Harrow, Aram W. .
PHYSICAL REVIEW LETTERS, 2006, 97 (17)
[5]   Entanglement-assisted classical capacity of noisy quantum channels [J].
Bennett, CH ;
Shor, PW ;
Smolin, JA ;
Thapliyal, AV .
PHYSICAL REVIEW LETTERS, 1999, 83 (15) :3081-3084
[6]   Entanglement Cost of Quantum Channels [J].
Berta, Mario ;
Brandao, Fernando G. S. L. ;
Christandl, Matthias ;
Wehner, Stephanie .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2013, 59 (10) :6779-6795
[7]   Practical Unitary Simulator for Non-Markovian Complex Processes [J].
Binder, Felix C. ;
Thompson, Jayne ;
Gu, Mile .
PHYSICAL REVIEW LETTERS, 2018, 120 (24)
[8]   Quantum-enhanced analysis of discrete stochastic processes [J].
Blank, Carsten ;
Park, Daniel K. ;
Petruccione, Francesco .
NPJ QUANTUM INFORMATION, 2021, 7 (01)
[9]   Low-cost error mitigation by symmetry verification [J].
Bonet-Monroig, X. ;
Sagastizabal, R. ;
Singh, M. ;
O'Brien, T. E. .
PHYSICAL REVIEW A, 2018, 98 (06)
[10]   The second laws of quantum thermodynamics [J].
Brandao, Fernando ;
Horodecki, Michal ;
Ng, Nelly ;
Oppenheim, Jonathan ;
Wehner, Stephanie .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2015, 112 (11) :3275-3279