Approximation property and nuclearity on mixed-norm Lp, modulation and Wiener amalgam spaces

被引:15
作者
Delgado, J. [1 ]
Ruzhansky, M. [1 ]
Wang, B. [2 ]
机构
[1] Imperial Coll London, Dept Math, 180 Queens Gate, London SW7 2AZ, England
[2] Peking Univ, Sch Math Sci, LMAM, Beijing 100871, Peoples R China
来源
JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES | 2016年 / 94卷
基金
英国工程与自然科学研究理事会;
关键词
VON-NEUMANN PROPERTIES; PSEUDODIFFERENTIAL-OPERATORS; CONTINUITY PROPERTIES; BANACH-SPACES; CALCULUS; DETERMINANTS;
D O I
10.1112/jlms/jdw040
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we first prove the metric approximation property for weighted mixed-norm L-p spaces. Using Gabor frame representation, this implies that the same property holds in weighted modulation and Wiener amalgam spaces. As a consequence, Grothendieck's theory becomes applicable, and we give criteria for nuclearity and -nuclearity for operators acting on these spaces as well as derive the corresponding trace formulae. Finally, we apply the notion of nuclearity to functions of the harmonic oscillator on modulation spaces.
引用
收藏
页码:391 / 408
页数:18
相关论文
共 44 条