Benchmark problems for numerical treatment of backflow at open boundaries

被引:39
作者
Bertoglio, Cristobal [1 ,2 ]
Caiazzo, Alfonso [3 ]
Bazilevs, Yuri [4 ]
Braack, Malte [5 ]
Esmaily, Mahdi [6 ,7 ]
Gravemeier, Volker [8 ,9 ]
Marsden, Alison L. [10 ]
Pironneau, Olivier [11 ]
Vignon-Clementel, Irene E. [11 ,12 ]
Wall, Wolfgang A. [8 ]
机构
[1] Univ Chile, Ctr Math Modeling, Santiago, Chile
[2] Univ Groningen, Johann Bernoulli Inst, Groningen, Netherlands
[3] Leibniz Inst Forsch Verbund Berlin EV, Weierstrass Inst Appl Anal & Stochast WIAS, Berlin, Germany
[4] Univ Calif San Diego, San Diego, CA 92103 USA
[5] Univ Kiel, Res Grp Appl Math, Kiel, Germany
[6] Cornell Univ, Sibley Sch Mech & Aerosp Engn, Ithaca, NY 14850 USA
[7] Stanford Univ, Ctr Turbulence Res, Stanford, CA 94305 USA
[8] Tech Univ Munich, Inst Computat Mech, Munich, Germany
[9] AdCo Engn GmbH, Munich, Germany
[10] Stanford Univ, Cardiovasc Biomech Computat Lab, Stanford, CA 94305 USA
[11] Pierre & Marie Curie Univ, Lab Jacques Louis Lions, Paris, France
[12] INRIA, REO Project Team, Paris, France
关键词
backflow stabilization; benchmarking; blood flows; Navier-Stokes equations respiratory flows; NAVIER-STOKES EQUATIONS; FLOW; SIMULATIONS; STABILIZATION; ALGORITHM;
D O I
10.1002/cnm.2918
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
In computational fluid dynamics, incoming velocity at open boundaries, or backflow, often yields unphysical instabilities already for moderate Reynolds numbers. Several treatments to overcome these backflow instabilities have been proposed in the literature. However, these approaches have not yet been compared in detail in terms of accuracy in different physiological regimes, in particular because of the difficulty to generate stable reference solutions apart from analytical forms. In this work, we present a set of benchmark problems in order to compare different methods in different backflow regimes (with a full reversal flow and with propagating vortices after a stenosis). The examples are implemented in FreeFem++, and the source code is openly available, making them a solid basis for future method developments.
引用
收藏
页数:34
相关论文
共 39 条
[1]  
Alnaes M, 2015, ARCHIVE NUMERICAL SO, V3, DOI DOI 10.11588/ANS.2015.100.20553
[2]   Modified Navier-Stokes equations for the outflow boundary conditions in hemodynamics [J].
Arbia, G. ;
Vignon-Clementel, I. E. ;
Hsia, T. -Y. ;
Gerbeau, J. -F. .
EUROPEAN JOURNAL OF MECHANICS B-FLUIDS, 2016, 60 :175-188
[3]   MULTISCALE MODELING OF THE RESPIRATORY TRACT [J].
Baffico, Leonardo ;
Grandmont, Celine ;
Maury, Bertrand .
MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2010, 20 (01) :59-93
[4]   Patient-specific isogeometric fluid-structure interaction analysis of thoracic aortic blood flow due to implantation of the Jarvik 2000 left ventricular assist device [J].
Bazilevs, Y. ;
Gohean, J. R. ;
Hughes, T. J. R. ;
Moser, R. D. ;
Zhang, Y. .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2009, 198 (45-46) :3534-3550
[5]  
BEGUE C, 1987, CR ACAD SCI I-MATH, V304, P23
[6]  
Bertoglio C, 2012, THESIS
[7]   A Stokes-residual backflow stabilization method applied tophysiological flows [J].
Bertoglio, Cristobal ;
Caiazzo, Alfonso .
JOURNAL OF COMPUTATIONAL PHYSICS, 2016, 313 :260-278
[8]   A tangential regularization method for backflow stabilization in hemodynamics [J].
Bertoglio, Cristobal ;
Caiazzo, Alfonso .
JOURNAL OF COMPUTATIONAL PHYSICS, 2014, 261 :162-171
[9]   Benchmark spectral results on the lid-driven cavity flow [J].
Botella, O ;
Peyret, R .
COMPUTERS & FLUIDS, 1998, 27 (04) :421-433
[10]  
Boukir K, 1997, INT J NUMER METH FL, V25, P1421, DOI 10.1002/(SICI)1097-0363(19971230)25:12<1421::AID-FLD334>3.0.CO