An abstract framework for parabolic PDEs on evolving spaces

被引:48
作者
Alphonse, Amal [1 ]
Elliott, Charles M. [1 ]
Stinner, Bjoern [1 ]
机构
[1] Univ Warwick, Inst Math, Coventry CV4 7AL, W Midlands, England
基金
英国工程与自然科学研究理事会;
关键词
Abstract parabolic equations; evolving Hilbert spaces; well-posedness; FINITE-ELEMENT-METHOD; DIFFERENTIAL-EQUATIONS; EVOLUTION-EQUATIONS; SURFACE; DOMAINS; FORMULATION;
D O I
10.4171/PM/1955
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We present an abstract framework for treating the theory of well-posedness of solutions to abstract parabolic partial differential equations on evolving Hilbert spaces. This theory is applicable to variational formulations of PDEs on evolving spatial domains including moving hypersurfaces. We formulate an appropriate time derivative on evolving spaces called the material derivative and define a weak material derivative in analogy with the usual time derivative in fixed domain problems; our setting is abstract and not restricted to evolving domains or surfaces. Then we show well-posedness to a certain class of parabolic PDEs under some assumptions on the parabolic operator and the data.
引用
收藏
页码:1 / 46
页数:46
相关论文
共 33 条
[1]  
Alphonse A., INTERFACES FRE UNPUB
[2]   An Arbitrary Lagrangian Eulerian formulation for a 3D eutrophication model in a moving domain [J].
Alvarez-Vazquez, Lino J. ;
Fernandez, Francisco J. ;
Lopez, Isabel ;
Martinez, Aurea .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2010, 366 (01) :319-334
[3]  
[Anonymous], 1968, TRAVAUX RECHERCHES M
[4]  
[Anonymous], 1987, Partial differential equations
[5]  
[Anonymous], GRUYTER SERIES NONLI
[6]   The surface finite element method for pattern formation on evolving biological surfaces [J].
Barreira, R. ;
Elliott, C. M. ;
Madzvamuse, A. .
JOURNAL OF MATHEMATICAL BIOLOGY, 2011, 63 (06) :1095-1119
[7]   Mauro Picone, Sandro Faedo, and the numerical solution of partial differential equations in Italy (1928-1953) [J].
Benzi, Michele ;
Toscano, Elena .
NUMERICAL ALGORITHMS, 2014, 66 (01) :105-145
[8]   A variational approach to evolution problems with variable domains [J].
Bonaccorsi, S ;
Guatteri, G .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2001, 175 (01) :51-70
[9]   Transport relations for surface integrals arising in the formulation of balance laws for evolving fluid interfaces [J].
Cermelli, P ;
Fried, E ;
Gurtin, ME .
JOURNAL OF FLUID MECHANICS, 2005, 544 :339-351
[10]  
Childress S., 2009, COURANT LECT NOTES M, V19