Chitosan/Graphene Oxide Composite as an Effective Adsorbent for Reactive Red Dye Removal

被引:42
作者
Guo, Xiaoqing [1 ,2 ]
Qu, Lijun [1 ,2 ]
Tian, Mingwei [1 ,2 ]
Zhu, Shifeng [1 ,2 ]
Zhang, Xiansheng [1 ,2 ]
Tang, Xiaoning [1 ,2 ]
Sun, Kaikai [1 ,2 ]
机构
[1] Qingdao Univ, Coll Text, Qingdao 266071, Shandong, Peoples R China
[2] Qingdao Univ, Lab New Fiber Mat & Modern Text, Growing Base State Key Lab, Qingdao 266071, Shandong, Peoples R China
关键词
chitosan; graphene oxide; reactive red; adsorption; kinetic model; METHYLENE-BLUE ADSORPTION; AQUEOUS-SOLUTION; GRAPHENE OXIDE; WASTE-WATER; ACTIVATED CARBONS; METAL-IONS; CHITOSAN; THERMODYNAMICS; EQUILIBRIUM; KINETICS;
D O I
10.2175/106143016X14609975746325
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Chitosan, modified with different dosages of graphene oxide (GO) and reduced graphene oxide (rGO), was first prepared, and its adsorption capacity for reactive red (RR) dye in aqueous solutions was investigated, in this paper. The structure and morphology of the adsorbents were characterized by FT-IR, XRD, SEM, EDX, BET, and TGA. The effect of varying parameters (pH, temperature, adsorbent loading, and contact time) was also investigated. The maximum adsorption capacity based on the Langmuir model was found to be 32.16 mg/g. In addition, experimental kinetic data were analyzed by the psuedo-first order and psuedo-second order equation models. The psuedo-second order model proved to be the best model for the adsorption system, which suggested that adsorption might be controlled by the chemical rate-limiting step through sharing of electrons or by covalent forces.
引用
收藏
页码:579 / 588
页数:10
相关论文
共 39 条
[1]  
Agiri GO, 2009, SCI RES ESSAYS, V4, P530
[2]   Removal of chromium (VI) ions from aqueous solutions by using Turkish montmorillonite clay: effect of activation and modification [J].
Akar, Sibel Tunali ;
Yetimoglu, Yasemin ;
Gedikbey, Tevfik .
DESALINATION, 2009, 244 (1-3) :97-108
[3]   Application of biosorption for the removal of organic pollutants: A review [J].
Aksu, Z .
PROCESS BIOCHEMISTRY, 2005, 40 (3-4) :997-1026
[4]   Effect of carbon surface chemistry on the removal of reactive dyes from textile effluent [J].
Al-Degs, Y ;
Khraisheh, MAM ;
Allen, SJ ;
Ahmad, MN .
WATER RESEARCH, 2000, 34 (03) :927-935
[5]   Adsorption of Cationic Dye (Methylene Blue) from Water Using Polyaniline Nanotubes Base [J].
Ayad, Mohamad M. ;
Abu El-Nasr, Ahmed .
JOURNAL OF PHYSICAL CHEMISTRY C, 2010, 114 (34) :14377-14383
[6]   Adsorption of volatile organic compounds by pecan shell- and almond shell-based granular activated carbons [J].
Bansode, RR ;
Losso, JN ;
Marshall, WE ;
Rao, RM ;
Portier, RJ .
BIORESOURCE TECHNOLOGY, 2003, 90 (02) :175-184
[7]   Kinetics and thermodynamics of Methylene Blue adsorption on Neem (Azadirachta indica) leaf powder [J].
Bhattacharyya, KG ;
Sharma, A .
DYES AND PIGMENTS, 2005, 65 (01) :51-59
[8]  
Bornet A, 2005, J INT SCI VIGNE VIN, V39, P199
[9]   A kinetics and thermodynamics study of methylene blue adsorption on wheat shells [J].
Bulut, Yasemin ;
Aydin, Haluk .
DESALINATION, 2006, 194 (1-3) :259-267
[10]   Progress in the electrochemical modification of graphene-based materials and their applications [J].
Chakrabarti, M. H. ;
Low, C. T. J. ;
Brandon, N. P. ;
Yufit, V. ;
Hashim, M. A. ;
Irfan, M. F. ;
Akhtar, J. ;
Ruiz-Trejo, E. ;
Hussain, M. A. .
ELECTROCHIMICA ACTA, 2013, 107 :425-440