Information Geometry on Complexity and Stochastic Interaction

被引:46
作者
Ay, Nihat [1 ,2 ,3 ]
机构
[1] Max Planck Inst Math Sci, D-04103 Leipzig, Germany
[2] Univ Leipzig, Fac Math & Comp Sci, D-04009 Leipzig, Germany
[3] Santa Fe Inst, Santa Fe, NM 87501 USA
关键词
MAXIMIZATION;
D O I
10.3390/e17042432
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Interdependencies of stochastically interacting units are usually quantified by the Kullback-Leibler divergence of a stationary joint probability distribution on the set of all configurations from the corresponding factorized distribution. This is a spatial approach which does not describe the intrinsically temporal aspects of interaction. In the present paper, the setting is extended to a dynamical version where temporal interdependencies are also captured by using information geometry of Markov chain manifolds.
引用
收藏
页码:2432 / 2458
页数:27
相关论文
共 58 条
[1]   The use of information theory in evolutionary biology [J].
Adami, Christoph .
YEAR IN EVOLUTIONARY BIOLOGY, 2012, 1256 :49-65
[2]   Natural gradient works efficiently in learning [J].
Amari, S .
NEURAL COMPUTATION, 1998, 10 (02) :251-276
[3]   Information geometry on hierarchy of probability distributions [J].
Amari, S .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2001, 47 (05) :1701-1711
[4]  
Amari S., 1985, Lecture Notes in Statistics, V28
[5]  
Amari Shun- ichi, 2000, Transl. Math. Monogr, Amer. Math. Soc.
[6]  
[Anonymous], P 2013 INT JOINT C N
[7]  
[Anonymous], 952001 MPI MIS
[8]  
[Anonymous], P EUR C COMPL SYST 2
[9]  
[Anonymous], 1945, BULL CALCUTTA MATH S, DOI DOI 10.1007/978-1-4612-0919-5_16
[10]  
[Anonymous], 1502005 SANT FE I