Determination of electron densities by diode-laser absorption spectroscopy in a pulsed ICP

被引:22
|
作者
Celik, Y. [1 ]
Aramaki, M. [2 ]
Luggenhoelscher, D. [1 ]
Czarnetzki, U. [1 ]
机构
[1] Ruhr Univ Bochum, Inst Plasma & Atom Phys, D-44780 Bochum, Germany
[2] Nagoya Univ, Dept Elect Engn & Comp Sci, Nagoya, Aichi 4648603, Japan
来源
PLASMA SOURCES SCIENCE & TECHNOLOGY | 2011年 / 20卷 / 01期
关键词
INDUCED FLUORESCENCE SPECTROSCOPY; THOMSON SCATTERING; RF DISCHARGE; PLASMA; TEMPERATURE; DIAGNOSTICS; SYSTEM; ARGON; ATOMS; PRESSURE;
D O I
10.1088/0963-0252/20/1/015022
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
A novel method to determine electron densities in a low pressure (1 Pa) pulsed ICP discharge via absorption spectroscopy on argon metastables is presented. By use of an external cavity diode laser tuned at a vacuum wavelength of 696.73 nm the time behaviour of the absorption from metastable argon atoms in the Ar1s(5) state in the afterglow is recorded. An analytical model motivates the assumption of a homogeneous metastable density distribution under our experimental conditions. Further, a detailed model for the metastable density decay is developed, including the spatial electron density distribution and its temporal decay. This allows determination of the electron density from the measured data. Comparison between densities obtained by this technique and by Langmuir probe measurements shows excellent agreement. Furthermore, the electron density decay time, the ambipolar diffusion constant and the effective electron temperature in the afterglow are determined comparing data and model. The scaling of the electron decay time with density indicates recombination. The obtained low electron temperature reduces diffusion very much and can be expected to cause an increased recombination rate.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] EVALUATION OF ABSOLUTE NUMBER DENSITIES BY DIODE-LASER ATOMIC-ABSORPTION SPECTROSCOPY
    BARBER, TE
    WALTERS, PE
    WINEFORDNER, JD
    OMENETTO, N
    APPLIED SPECTROSCOPY, 1991, 45 (04) : 524 - 526
  • [2] DIODE-LASER ABSORPTION-SPECTROSCOPY FOR PROCESS DIAGNOSTICS
    BOMSE, DS
    HOVDE, DC
    OH, DB
    SILVER, JA
    STANTON, AC
    ANDERSON, HC
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 1992, 203 : 143 - ANYL
  • [3] DIODE-LASER SPECTROSCOPY
    KOSICHKIN, YV
    NADEZHDINSKII, AI
    IZVESTIYA AKADEMII NAUK SSSR SERIYA FIZICHESKAYA, 1983, 47 (10): : 2037 - 2045
  • [4] A STUDY INTO BROADENING OF MOLECULAR GAS-ABSORPTION LINES BY THE METHOD OF PULSED DIODE-LASER SPECTROSCOPY
    ZASAVITSKII, II
    KOSICHKIN, YV
    NADEZHDINSKII, AI
    STEPANOV, EV
    TISHCHENKO, AY
    SHOTOV, AP
    KVANTOVAYA ELEKTRONIKA, 1984, 11 (12): : 2443 - 2451
  • [5] Determination of trace moisture in gases by diode-laser multi-pass absorption spectroscopy
    Wu, SQ
    Kimishima, T
    Masusaki, H
    Kuze, H
    Takeuchi, N
    BUNSEKI KAGAKU, 2000, 49 (02) : 99 - 104
  • [7] Laser temperature compensation used in tunable diode-laser absorption spectroscopy
    Yuan, Song
    Kan, Ruifeng
    He, Yabai
    Yao, Lu
    Chen, Jiuying
    Xu, Zhenyu
    Li, Han
    Ruan, Jun
    He, Junfeng
    Wei, Min
    Zhongguo Jiguang/Chinese Journal of Lasers, 2013, 40 (05):
  • [8] DIODE-LASER SPECTROSCOPY - FOREWORD
    NIEMAX, K
    SPECTROCHIMICA ACTA REVIEWS, 1993, 15 (05): : 289 - 289
  • [9] DIODE-LASER AUTODETACHMENT SPECTROSCOPY
    MARAWAR, RW
    COWLES, DC
    KEELER, RE
    WHITE, AP
    FARLEY, JW
    REVIEW OF SCIENTIFIC INSTRUMENTS, 1994, 65 (09): : 2769 - 2775
  • [10] Spectroscopy with diode-laser noise
    Rosenbluh, M
    Rosenhouse-Dantsker, A
    Wilson-Gordon, AD
    Levenson, MD
    Walser, R
    OPTICS COMMUNICATIONS, 1998, 146 (1-6) : 158 - 162