Bi-Sobolev homeomorphisms and Bqp classes

被引:0
作者
Formica, Maria Rosaria [1 ]
Pietroluongo, Mariafortuna [1 ]
机构
[1] Univ Napoli Parthenope, Via Gen Parisi 13, I-80132 Naples, Italy
关键词
Reverse Holder inequalities; Gehring classes; Muckenhoupt weights; Homeomorphisms; QUASI-CONFORMAL MAPPINGS; INEQUALITIES; INTEGRABILITY; REGULARITY; WEIGHTS; INVERSE;
D O I
10.1007/s11587-016-0302-z
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let h : IR -> IR be a bi-Sobolev map, that is a homeomorphism which is locally absolutely continuous with its inverse and let B-p(q) (p < q) be the class of weights w on IR satisfying the reverse Holder inequality (f(I) w(q) (x)dx)(1/q) <= K (f(I) w(q) (x)dx)(1/p) , (K > 1), for every interval I. IR. Assumew = h' belongs to a B-p(q) class. We look for conditions under which also v = (h(-1))' belongs to some related B-r(s) class. Namely we prove that, if p < 0 and q > 1, then (h(-1))' epsilon B-1-q(1-p) double left right arrow h' epsilon B-p(q). Moreover we show some links among B-r(s) classes and Muckenhoupt and Gehring classes and we compute the B-r(s)-constant of a power function.
引用
收藏
页码:313 / 332
页数:20
相关论文
共 38 条
[1]   Weighted fully measurable grand Lebesgue spaces and the maximal theorem [J].
Anatriello G. ;
Formica M.R. .
Ricerche di Matematica, 2016, 65 (1) :221-233
[2]  
[Anonymous], PUBL MATH
[3]  
[Anonymous], 2014, LECT NOTES MATH
[4]  
[Anonymous], 2009, Princeton Mathematical Series
[5]  
[Anonymous], VARIABLE LEBESGUE SP
[6]   THE MUCKENHOUPT CLASS A1(R) [J].
BOJARSKI, B ;
SBORDONE, C ;
WIK, I .
STUDIA MATHEMATICA, 1992, 101 (02) :155-163
[7]   REMARKS ON THE STABILITY OF REVERSE HOLDER INEQUALITIES AND QUASI-CONFORMAL MAPPINGS [J].
BOJARSKI, B .
ANNALES ACADEMIAE SCIENTIARUM FENNICAE-MATHEMATICA, 1985, 10 (01) :89-94
[8]   ANALYTICAL FOUNDATIONS OF THE THEORY OF QUASICONFORMAL MAPPINGS IN RN [J].
BOJARSKI, B ;
IWANIEC, T .
ANNALES ACADEMIAE SCIENTIARUM FENNICAE-MATHEMATICA, 1983, 8 (02) :257-324
[9]   On the regularity theory of bi-Sobolev mappings [J].
Capone, C. ;
Formica, M. R. ;
Giova, R. ;
Schiattarella, R. .
RENDICONTI LINCEI-MATEMATICA E APPLICAZIONI, 2013, 24 (04) :527-548
[10]  
DAPUZZO L, 1990, REND MAT APPL, V10