Mutating loops and 2-cycles in 2-CY triangulated categories

被引:5
作者
Bertani-Okland, Marco Angel [1 ]
Oppermann, Steffen [1 ]
机构
[1] NTNU, Inst Matemat Fag, N-7491 Trondheim, Norway
关键词
2-Calabi-Yau triangulated category; Mutation; Loop; Cluster-tilting object; 2-Calabi-Yau tilted algebra; CLUSTER-TILTED ALGEBRAS; QUIVERS; REPRESENTATIONS; MODULES;
D O I
10.1016/j.jalgebra.2011.03.005
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We derive a method for mutating quivers of 2-CY tilted algebras that have loops and 2-cycles, under certain specific conditions. Further, we give the classification of the 2-CY tilted algebras coming from standard algebraic 2-CY triangulated categories with a finite number of indecomposables. These algebras satisfy the setup for our method of mutation. (C) 2011 Elsevier Inc. All rights reserved.
引用
收藏
页码:195 / 218
页数:24
相关论文
共 30 条
[1]   ON THE STRUCTURE OF TRIANGULATED CATEGORIES WITH FINITELY MANY INDECOMPOSABLES [J].
Amiot, Claire .
BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE, 2007, 135 (03) :435-474
[2]  
Auslander M., 1995, REPRESENTATION THEOR, DOI [10.1017/CBO9780511623608, DOI 10.1017/CBO9780511623608]
[3]   FINDING A CLUSTER-TILTING OBJECT FOR A REPRESENTATION FINITE CLUSTER-TILTED ALGEBRA [J].
Bertani-Okland, M. A. ;
Oppermann, S. ;
Wralsen, A. .
COLLOQUIUM MATHEMATICUM, 2010, 121 (02) :249-263
[4]  
BERTANIOKLAND MA, ARXIV10094812V1
[5]   COVERING-SPACES IN REPRESENTATION-THEORY [J].
BONGARTZ, K ;
GABRIEL, P .
INVENTIONES MATHEMATICAE, 1982, 65 (03) :331-378
[6]   Cluster structures for 2-Calabi-Yau categories and unipotent groups [J].
Buan, A. B. ;
Iyama, O. ;
Reiten, I. ;
Scott, J. .
COMPOSITIO MATHEMATICA, 2009, 145 (04) :1035-1079
[7]  
BUAN AB, AM J MATH IN PRESS
[8]  
Buan AB, 2008, COMMENT MATH HELV, V83, P143
[9]   Cluster-tilted algebras of finite representation type [J].
Buan, Aslak Bakke ;
Marsh, Bethany Rose ;
Reiten, Idun .
JOURNAL OF ALGEBRA, 2006, 306 (02) :412-431
[10]  
Buan AB, 2007, T AM MATH SOC, V359, P323