Parameters Compressing in Deep Learning

被引:69
作者
He, Shiming [1 ]
Li, Zhuozhou [1 ]
Tang, Yangning [1 ]
Liao, Zhuofan [1 ]
Li, Feng [1 ]
Lim, Se-Jung [2 ]
机构
[1] Changsha Univ Sci & Technol, Sch Comp & Commun Engn, Hunan Prov Key Lab Intelligent Proc Big Data Tran, Changsha 410114, Peoples R China
[2] Honam Univ, Liberal Arts & Convergence Studies, Gwangju 62399, South Korea
来源
CMC-COMPUTERS MATERIALS & CONTINUA | 2020年 / 62卷 / 01期
基金
中国国家自然科学基金;
关键词
Deep neural network; parameters compressing; matrix decomposition; tensor decomposition;
D O I
10.32604/cmc.2020.06130
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
With the popularity of deep learning tools in image decomposition and natural language processing, how to support and store a large number of parameters required by deep learning algorithms has become an urgent problem to be solved. These parameters are huge and can be as many as millions. At present, a feasible direction is to use the sparse representation technique to compress the parameter matrix to achieve the purpose of reducing parameters and reducing the storage pressure. These methods include matrix decomposition and tensor decomposition. To let vector take advance of the compressing performance of matrix decomposition and tensor decomposition, we use reshaping and unfolding to let vector be the input and output of Tensor-Factorized Neural Networks. We analyze how reshaping can get the best compress ratio. According to the relationship between the shape of tensor and the number of parameters, we get a lower bound of the number of parameters. We take some data sets to verify the lower bound.
引用
收藏
页码:321 / 336
页数:16
相关论文
共 23 条
[1]  
Chen Y., 2018, Cluster Comput, P1
[2]   Tensor-Factorized Neural Networks [J].
Chien, Jen-Tzung ;
Bao, Yi-Ting .
IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2018, 29 (05) :1998-2011
[3]   A multilinear singular value decomposition [J].
De Lathauwer, L ;
De Moor, B ;
Vandewalle, J .
SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2000, 21 (04) :1253-1278
[4]  
Denil Misha, 2013, Advances in Neural Information Processing Systems
[5]  
Kim Y. D., 2016, COMPUTER VISION PATT
[6]   Tensor Decompositions and Applications [J].
Kolda, Tamara G. ;
Bader, Brett W. .
SIAM REVIEW, 2009, 51 (03) :455-500
[7]  
Lebedev V., 2014, COMPUTER VISION PATT
[8]   Gradient-based learning applied to document recognition [J].
Lecun, Y ;
Bottou, L ;
Bengio, Y ;
Haffner, P .
PROCEEDINGS OF THE IEEE, 1998, 86 (11) :2278-2324
[9]  
Li W. J., 2018, THEOR COMPUT SCI
[10]  
Novikov A, 2015, ADV NEUR IN, V28