A machine learning approach to predict thermal expansion of complex oxides

被引:10
作者
Peng, Jian [1 ]
Gunda, N. S. Harsha [1 ]
Bridges, Craig A. [2 ]
Lee, Sangkeun [3 ]
Haynes, J. Allen [1 ]
Shin, Dongwon [1 ]
机构
[1] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA
[2] Oak Ridge Natl Lab, Chem Sci Div, Oak Ridge, TN 37831 USA
[3] Oak Ridge Natl Lab, Comp Sci & Math Div, Oak Ridge, TN 37831 USA
关键词
Machine learning; Oxides; Thermal expansion; Polyhedron; Lattice Parameters; MEMBER THERMODYNAMIC PROPERTIES; STRUCTURAL PHASE-TRANSITIONS; DATA ANALYTICS APPROACH; SILICATE MINERALS; ELECTRICAL-PROPERTIES; CRYSTAL-STRUCTURE; HEAT-CAPACITY; X-RAY; TEMPERATURE; ENTROPY;
D O I
10.1016/j.commatsci.2021.111034
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Although it is of scientific and practical importance, the state-of-the-art of predicting the thermal expansion of oxides over broad temperature and composition ranges by physics-based atomistic simulations is currently limited to qualitative agreements. We present an emerging machine learning (ML) approach to accurately predict the thermal expansion of cubic oxides with a dataset consisting of experimentally measured lattice parameters while using the metal cation polyhedron and temperature as descriptors. High-fidelity ML models that can accurately predict temperature- and composition-dependent lattice parameters of cubic oxides with isotropic thermal expansions have been successfully trained. The ML-predicted thermal expansions of oxides not included in the training dataset have shown good agreement with available experiments. The limitations of the current approach and challenges to go beyond cubic oxides with isotropic thermal expansion are also briefly discussed.
引用
收藏
页数:7
相关论文
共 75 条
[1]   Role of intrinsic disorder in the structural phase transition of magnetoelectric EuTiO3 [J].
Allieta, Mattia ;
Scavini, Marco ;
Spalek, Leszek J. ;
Scagnoli, Valerio ;
Walker, Helen C. ;
Panagopoulos, Christos ;
Saxena, Siddharth S. ;
Katsufuji, Takuro ;
Mazzoli, Claudio .
PHYSICAL REVIEW B, 2012, 85 (18)
[2]   AN INTRODUCTION TO KERNEL AND NEAREST-NEIGHBOR NONPARAMETRIC REGRESSION [J].
ALTMAN, NS .
AMERICAN STATISTICIAN, 1992, 46 (03) :175-185
[3]  
[Anonymous], 1981, STRUCTURE BONDING CR
[4]  
Au A.Y.C., 1984, THESIS STATE U NEW Y
[5]  
Awad M., 2015, Efficient Learning Machines. Theories, Concepts, DOI [10.1007/978-1-4302-5990-9, DOI 10.1007/978-1-4302-5990-9, DOI 10.1007/978-1-4302-5990-9_1]
[6]   Phonons and related crystal properties from density-functional perturbation theory [J].
Baroni, S ;
de Gironcoli, S ;
Dal Corso, A ;
Giannozzi, P .
REVIEWS OF MODERN PHYSICS, 2001, 73 (02) :515-562
[7]   First-principles study of structural, elastic, electronic, and thermal properties of SrTiO3 perovskite cubic [J].
Boudali, A. ;
Khodja, M. Driss ;
Amrani, B. ;
Bourbie, D. ;
Amara, K. ;
Abada, A. .
PHYSICS LETTERS A, 2009, 373 (8-9) :879-884
[8]   X-RAY STUDY AND ELECTRICAL PROPERTIES OF THE SYSTEM BAXSR(1-X)MOO3 [J].
BRIXNER, LH .
JOURNAL OF INORGANIC & NUCLEAR CHEMISTRY, 1960, 14 (3-4) :225-230
[9]  
CHERMAK JA, 1990, AM MINERAL, V75, P1376
[10]  
CHERMAK JA, 1989, AM MINERAL, V74, P1023