Investigation of Dynamic Temperature-Sensitive Electrical Parameters for Medium-Voltage SiC and Si Devices

被引:21
作者
Ni, Ze [1 ]
Zheng, Sheng [2 ]
Chinthavali, Madhu Sudhan [2 ]
Cao, Dong [3 ]
机构
[1] Monolithic Power Syst Inc, San Jose, CA 95123 USA
[2] Oak Ridge Natl Lab, Power Elect Syst Integrat Grp, Knoxville, TN 37932 USA
[3] Univ Dayton, Dept Comp Engn, Dayton, OH 45469 USA
关键词
Logic gates; Silicon carbide; Silicon; Switches; Temperature measurement; MOSFET; Insulated gate bipolar transistors; Condition monitoring; junction temperature; medium voltage (MV); reliability; silicon carbide (SiC) MOSFET; silicon (Si) insulated-gate bipolar transistor (IGBT); temperature-sensitive electrical parameter (TSEP); SILICON-CARBIDE MOSFET; POWER; IMPACT;
D O I
10.1109/JESTPE.2021.3054018
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This article presents six groups of dynamic temperature-sensitive electrical parameters (TSEPs) for the medium-voltage silicon carbide (SiC) and silicon (Si) devices. The physical mechanisms of the temperature dependence of these parameters are analyzed with the difference between SiC and Si devices highlighted. A test platform is developed that enables implementation of the temperature relevant dynamic characterization. The investigated TSEPs are summarized in terms of their relationship with junction temperature, load current, dc voltage, and external gate resistance. The impact of the parasitic parameters on the evaluation results is analyzed. The comparison between 3.3-kV 5-A SiC MOSFETs and 3-kV 12-A Si insulated-gate bipolar transistors (IGBTs) is conducted. The results verify that for the medium-voltage SiC MOSFETs, the turn-off drain-source voltage switching rate, the turn-off gate current peak value, and the turn-on gate current plateau achieve better thermal sensitivity, in comparison with the Si IGBTs. The turn-off and turn-on delay time exhibit better thermal linearity compared with other investigated TSEPs.
引用
收藏
页码:6408 / 6423
页数:16
相关论文
共 60 条
  • [1] Agrawal B, 2017, APPL POWER ELECT CO, P2664, DOI 10.1109/APEC.2017.7931075
  • [2] [Anonymous], 2002, EST MOSFET PAR DAT S, P2
  • [3] [Anonymous], 2000, JESD77B JEDEC EL IND, P4
  • [4] Temperature Measurement of Power Semiconductor Devices by Thermo-Sensitive Electrical Parameters-A Review
    Avenas, Yvan
    Dupont, Laurent
    Khatir, Zoubir
    [J]. IEEE TRANSACTIONS ON POWER ELECTRONICS, 2012, 27 (06) : 3081 - 3092
  • [5] IGBT Junction Temperature Measurement via Peak Gate Current
    Baker, Nick
    Munk-Nielsen, Stig
    Iannuzzo, Francesco
    Liserre, Marco
    [J]. IEEE TRANSACTIONS ON POWER ELECTRONICS, 2016, 31 (05) : 3784 - 3793
  • [6] Baliga B.J., 2008, Fundamentals of Power Semiconductor Devices, V1st, P455
  • [7] Bianda E., 2013, EUROPEAN C POWER ELE, P1, DOI [10.1109/EPE.2013.6634444, DOI 10.1109/EPE.2013.6634444]
  • [8] Estimation and measurement of junction temperatures in a three-level voltage source converter
    Brueckner, Thomas
    Bernet, Steffen
    [J]. IEEE TRANSACTIONS ON POWER ELECTRONICS, 2007, 22 (01) : 3 - 12
  • [9] Investigation Into IGBT dV/dt During Turn-Off and Its Temperature Dependence
    Bryant, Angus
    Yang, Shaoyong
    Mawby, Philip
    Xiang, Dawei
    Ran, Li
    Tavner, Peter
    Palmer, Patrick R.
    [J]. IEEE TRANSACTIONS ON POWER ELECTRONICS, 2011, 26 (10) : 3019 - 3031
  • [10] Butron Ccoa Jimmy Alexander, 2014, PCIM Europe 2014. Power Electronics, Intelligent Motion, Power Quality and Energy Management, P456