Energy conservation and dissipation properties of time-integration methods for nonsmooth elastodynamics with contact

被引:32
作者
Acary, Vincent [1 ,2 ]
机构
[1] Inria Rhone Alpes, 655 Ave Europe, F-38330 Montbonnot St Martin, France
[2] Inria Chile, Ave Apoquindo 2827, Las Condes, Santiago De Chi, Chile
来源
ZAMM-ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK | 2016年 / 96卷 / 05期
关键词
Contact dynamics; impact; computational contact mechanics; numerical time integration; energy conservation; dissipation properties; IMPROVED NUMERICAL DISSIPATION; GENERALIZED-ALPHA SCHEME; MECHANICAL SYSTEMS; CONSERVING ALGORITHMS; DYNAMICS; EQUATIONS; NEWMARK; CONSTRAINTS; STABILITY;
D O I
10.1002/zamm.201400231
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This article is devoted to the study of the conservation and the dissipation properties of the mechanical energy of several time-integration methods dedicated to the elasto-dynamics with unilateral contact. Given that the direct application of the standard schemes as the Newmark schemes or the generalized-alpha schemes leads to energy blow-up, we study two schemes dedicated to the time-integration of nonsmooth systems with contact: the Moreau-Jean scheme and the nonsmooth generalized-alpha scheme. The energy conservation and dissipation properties of the Moreau-Jean is firstly shown. In a second step, the nonsmooth generalized-alpha scheme is studied by adapting the previous works of Krenk and Hogsberg in the context of unilateral contact. Finally, the known properties of the Newmark and the Hilber-Hughes-Taylor (HHT) scheme in the unconstrained case are extended without any further assumptions to the case with contact. (C) 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
引用
收藏
页码:585 / 603
页数:19
相关论文
共 61 条
[41]  
Laursen T.A., 2003, COMPUTATIONAL CONTAC
[42]   Improved implicit integrators for transient impact problems - geometric admissibility within the conserving framework [J].
Laursen, TA ;
Love, GR .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2002, 53 (02) :245-274
[43]  
Laursen TA, 1997, INT J NUMER METH ENG, V40, P863, DOI 10.1002/(SICI)1097-0207(19970315)40:5<863::AID-NME92>3.0.CO
[44]  
2-V
[45]   SURVEY OF THE STABILITY OF LINEAR FINITE DIFFERENCE EQUATIONS [J].
LAX, PD ;
RICHTMYER, RD .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1956, 9 (02) :267-293
[46]  
Leine RI, 2008, LECT NOTES APPL COMP, V36, P1, DOI 10.1007/978-3-540-76975-0
[47]   Solving constrained mechanical systems by the family of Newmark and α-methods [J].
Lunk, Christoph ;
Simeon, Bernd .
ZAMM-ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 2006, 86 (10) :772-784
[48]  
Moller M., 2011, THESIS ETH ZURICH
[49]  
Monteiro Marques MDP., 1993, Differential inclusions in nonsmooth mechanical problems: shocks and dry friction
[50]  
Moreau J.-J., 1988, NONSMOOTH MECH APPL, DOI DOI 10.1007/978-3-7091-2624-0_1