Li-Yau Estimates for a Nonlinear Parabolic Equation on Manifolds

被引:16
作者
Zhu, Xiaorui [1 ,2 ]
Li, Yi [3 ,4 ]
机构
[1] China Maritime Police Acad, Ningbo 315801, Peoples R China
[2] Zhejiang Univ, Ctr Math Sci, Hangzhou 310027, Zhejiang, Peoples R China
[3] Shanghai Jiao Tong Univ, Dept Math, Shanghai 200240, Peoples R China
[4] Fudan Univ, Shanghai Ctr Math Sci, Shanghai 200433, Peoples R China
关键词
Nonlinear parabolic equation; Li-Yau estimates; RIEMANNIAN-MANIFOLDS; RICCI FLOW;
D O I
10.1007/s11040-014-9155-4
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we derive Li-Yau gradient estimates for the positive solution of a nonlinear parabolic equation u(t) = Delta u-qu-au(ln u)(alpha), where q is a C-2 function and a, alpha are constants, on a complete manifold (M, g) with bounded below Ricci curvature. The results generalize classical Li-Yau gradient estimates and some recent works on this direction.
引用
收藏
页码:273 / 288
页数:16
相关论文
共 13 条
[2]   Gradient estimates for a nonlinear parabolic equation on complete non-compact Riemannian manifolds [J].
Chen, Li ;
Chen, Wenyi .
ANNALS OF GLOBAL ANALYSIS AND GEOMETRY, 2009, 35 (04) :397-404
[3]   DIFFERENTIAL EQUATIONS ON RIEMANNIAN MANIFOLDS AND THEIR GEOMETRIC APPLICATIONS [J].
CHENG, SY ;
YAU, ST .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1975, 28 (03) :333-354
[4]  
HAMILTON RS, 1993, J DIFFER GEOM, V37, P225
[5]  
Hsu SY, 2011, DIFFER INTEGRAL EQU, V24, P645
[6]   ON THE PARABOLIC KERNEL OF THE SCHRODINGER OPERATOR [J].
LI, P ;
YAU, ST .
ACTA MATHEMATICA, 1986, 156 (3-4) :153-201
[7]  
LI YS, UNPUB
[8]   Gradient estimates for a simple elliptic equation on complete non-compact Riemannian manifolds [J].
Ma, Li .
JOURNAL OF FUNCTIONAL ANALYSIS, 2006, 241 (01) :374-382
[9]  
Peleman G., ARXIVMATHDG021159
[10]   Hamilton-type gradient estimates for a nonlinear parabolic equation on Riemannian manifolds [J].
Qian, Bin .
ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2011, 27 (06) :1071-1078