Arabidopsis thaliana plants lacking the PSI-D subunit of photosystem I suffer severe photoinhibition, have unstable photosystem I complexes, and altered redox homeostasis in the chloroplast stroma

被引:53
作者
Haldrup, A [1 ]
Lunde, C [1 ]
Scheller, HV [1 ]
机构
[1] Royal Vet & Agr Univ, Dept Plant Biol, Plant Biochem Lab, DK-1871 Frederiksberg C, Denmark
关键词
D O I
10.1074/jbc.M305106200
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The PSI-D subunit of photosystem I is a hydrophilic subunit of about 18 kDa, which is exposed to the stroma and has an important function in the docking of ferredoxin to photosystem I. We have used an antisense approach to obtain Arabidopsis thaliana plants with only 5 - 60% of PSI-D. No plants were recovered completely lacking PSI-D, suggesting that PSI-D is essential for a functional PSI in plants. Plants with reduced amounts of PSI-D showed a similar decrease in all other subunits of PSI including the light harvesting complex, suggesting that in the absence of PSI-D, PSI cannot be properly assembled and becomes degraded. Plants with reduced amounts of PSI-D became light-stressed even in low light although they exhibited high non-photochemical quenching (NPQ). The high NPQ was generated by upregulating the level of violaxanthin de-epoxidase and PsbS, which are both essential components of NPQ. Interestingly, the lack of PSI-D affected the redox state of thioredoxin. During the normal light cycle thioredoxin became increasingly oxidized, which was observed as decreasing malate dehydrogenase activity over a 4-h light period. This result shows that photosynthesis was close to normal the first 15 min, but after 2 - 4 h photo-inhibition dominated as the stroma progressively became less reduced. The change in the thiol disulfide redox state might be fatal for the PSI-D-less plants, because reduction of thioredoxin is one of the main switches for the initiation of CO2 assimilation and photoprotection upon light exposure.
引用
收藏
页码:33276 / 33283
页数:8
相关论文
共 72 条
[1]  
ANDERSEN B, 1992, PHYSIOL PLANTARUM, V84, P154, DOI 10.1111/j.1399-3054.1992.tb08778.x
[2]  
ANDERSSON J, 2003, IN PRESS PLANT J
[3]   AFFINITY FOR OXYGEN IN PHOTO-REDUCTION OF MOLECULAR-OXYGEN AND SCAVENGING OF HYDROGEN-PEROXIDE IN SPINACH-CHLOROPLASTS [J].
ASADA, K ;
NAKANO, Y .
PHOTOCHEMISTRY AND PHOTOBIOLOGY, 1978, 28 (4-5) :917-920
[4]   Structural basis for the light regulation of chloroplast NADP malate dehydrogenase [J].
Ashton, AR ;
Trevanion, SJ ;
Carr, PD ;
Verger, D ;
Ollis, DL .
PHYSIOLOGIA PLANTARUM, 2000, 110 (03) :314-321
[5]   Role of phosphorylation in the repair cycle and oligomeric structure of photosystem II [J].
Baena-González, E ;
Barbato, R ;
Aro, EM .
PLANTA, 1999, 208 (02) :196-204
[6]   Lhc proteins and the regulation of photosynthetic light harvesting function by xanthophylls [J].
Bassi, R ;
Caffarri, S .
PHOTOSYNTHESIS RESEARCH, 2000, 64 (2-3) :243-256
[7]   Photoinhibition of Photosystem I in field-grown barley (Hordeum vulgare L.):: Induction, recovery and acclimation [J].
Bernhard Teicher, H ;
Moller, BL ;
Scheller, HV .
PHOTOSYNTHESIS RESEARCH, 2000, 64 (01) :53-61
[8]   Role of acidic amino acid residues of PsaD subunit on limiting the affinity of photosystem I for ferredoxin [J].
Bottin, H ;
Hanley, J ;
Lagoutte, B .
BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 2001, 287 (04) :833-836
[9]   The plastidic 2-cysteine peroxiredoxin is a target for a thioredoxin involved in the protection of the photosynthetic apparatus against oxidative damage [J].
Broin, M ;
Cuiné, S ;
Eymery, F ;
Rey, P .
PLANT CELL, 2002, 14 (06) :1417-1432
[10]   Identification of a functional respiratory complex in chloroplasts through analysis of tobacco mutants containing disrupted plastid ndh genes [J].
Burrows, PA ;
Sazanov, LA ;
Svab, Z ;
Maliga, P ;
Nixon, PJ .
EMBO JOURNAL, 1998, 17 (04) :868-876