Influence of a density increase on the evolution of the Kelvin-Helmholtz instability and vortices

被引:19
|
作者
Amerstorfer, U. V. [1 ]
Erkaev, N. V. [2 ,3 ]
Taubenschuss, U. [4 ]
Biernat, H. K. [1 ,5 ]
机构
[1] Austrian Acad Sci, Inst Space Res, A-8042 Graz, Austria
[2] Siberian Fed Univ, Krasnoyarsk 660041, Russia
[3] Inst Computat Modelling, Krasnoyarsk 660036, Russia
[4] Univ Iowa, Dept Phys & Astron, Iowa City, IA 52242 USA
[5] Karl Franzens Univ Graz, Inst Phys, A-8010 Graz, Austria
基金
奥地利科学基金会;
关键词
VENUS IONOPAUSE; SIMULATION; SCHEMES;
D O I
10.1063/1.3453705
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Results of two-dimensional nonlinear numerical simulations of the magnetohydrodynamic Kelvin-Helmholtz instability are presented. A boundary layer of a certain width is assumed, which separates the plasma in the upper layer from the plasma in the lower layer. A special focus is given on the influence of a density increase toward the lower layer. The evolution of the Kelvin-Helmholtz instability can be divided into three different phases, namely, a linear growth phase at the beginning, followed by a nonlinear phase with regular structures of the vortices, and finally, a turbulent phase with nonregular structures. The spatial scales of the vortices are about five times the initial width of the boundary layer. The considered configuration is similar to the situation around unmagnetized planets, where the solar wind (upper plasma layer) streams past the ionosphere (lower plasma layer), and thus the plasma density increases toward the planet. The evolving vortices might detach around the terminator of the planet and eventually so-called plasma clouds might be formed, through which ionospheric material can be lost. For the special case of a Venus-like planet, loss rates are estimated, which are of the order of estimated loss rates from observations at Venus. (C) 2010 American Institute of Physics. [doi:10.1063/1.3453705]
引用
收藏
页数:8
相关论文
共 50 条
  • [1] KELVIN-HELMHOLTZ INSTABILITY AND VORTICES IN MAGNETIZED PLASMA
    HORTON, W
    TAJIMA, T
    KAMIMURA, T
    PHYSICS OF FLUIDS, 1987, 30 (11) : 3485 - 3495
  • [2] INFLUENCE OF ROTATION ON KELVIN-HELMHOLTZ INSTABILITY
    GEDZELMA.SD
    JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA, 1972, 52 (05): : 1313 - &
  • [3] INFLUENCE OF ROTATION ON KELVIN-HELMHOLTZ INSTABILITY
    GEDZELMAN, SD
    JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA, 1974, 56 (05): : 1371 - 1375
  • [4] KELVIN-HELMHOLTZ INSTABILITY IN MEDIA OF VARIABLE DENSITY
    ALTERMAN, Z
    PHYSICS OF FLUIDS, 1961, 4 (09) : 1177 - 1179
  • [5] The Kelvin-Helmholtz Instability
    Trussoni, E.
    JETS FROM YOUNG STARS III: NUMERICAL MHD AND INSTABILITIES, 2008, 754 : 105 - 130
  • [6] Resistive evolution of the magnetized Kelvin-Helmholtz instability
    Lee, H
    Kim, T
    Min, K
    NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA C-GEOPHYSICS AND SPACE PHYSICS, 1997, 20 (01): : 121 - 126
  • [7] ON KELVIN-HELMHOLTZ INSTABILITY
    MILES, JW
    PHYSICS OF FLUIDS, 1980, 23 (09) : 1915 - 1916
  • [8] Evolution of Kelvin-Helmholtz Instability on the Venusian Ionopause with the Influence of Hall Effect
    Li, Yun
    Lu, Haoyu
    ASTROPHYSICAL JOURNAL, 2019, 875 (01):
  • [9] Density and Magnetic Field Asymmetric Kelvin-Helmholtz Instability
    Ma, Xuanye
    Delamere, Peter
    Nykyri, Katariina
    Otto, Antonius
    Eriksson, Stefan
    Chai, Lihui
    Burkholder, Brandon
    Dimmock, Andrew
    Liou, Yu-Lun
    Kavosi, Shiva
    JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 2024, 129 (03)
  • [10] Destabilizing effect of density gradient on the Kelvin-Helmholtz instability
    Wang, L. F.
    Xue, C.
    Ye, W. H.
    Li, Y. J.
    PHYSICS OF PLASMAS, 2009, 16 (11) : 112104