Regularization of currents and entropy

被引:77
作者
Dinh, TC [1 ]
Sibony, N [1 ]
机构
[1] Univ Paris 11, UMR 8628, F-91405 Orsay, France
来源
ANNALES SCIENTIFIQUES DE L ECOLE NORMALE SUPERIEURE | 2004年 / 37卷 / 06期
关键词
D O I
10.1016/j.ansens.2004.09.002
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let T be a positive closed (p,p)-current on a compact Kahler manifold X. We prove the existence of smooth positive closed (p,p)-forms T-n(+) and T-n(-) such that T-n(+) T-n(-) -> T weakly. Moreover, parallel to T(n)(+/-)parallel to <= c(X) parallel to T parallel to where c(X) > 0 is a constant independent of T. We also extend this result to positive pluriharmonic currents. Then we study the wedge product of positive closed (1, 1)-currents having continuous potential with positive pluriharmonic currents. As an application, we give an estimate for the topological entropy of meromorphic maps on compact Kahler manifolds. (c) 2004 Elsevier SAS.
引用
收藏
页码:959 / 971
页数:13
相关论文
共 23 条
[11]  
DINH TC, IN PRESS B SOC MATH
[12]  
DINH TC, IN PRESS JAMS
[13]   POLYNOMIAL CONVEXITY, RATIONAL CONVEXITY, AND CURRENTS [J].
DUVAL, J ;
SIBONY, N .
DUKE MATHEMATICAL JOURNAL, 1995, 79 (02) :487-513
[14]  
FORNAESS JE, 2004, HARMONIC CURRENTS FI
[15]   ENTROPY OF POLYNOMIAL AND RATIONAL MAPS [J].
FRIEDLAND, S .
ANNALS OF MATHEMATICS, 1991, 133 (02) :359-368
[16]  
GROMOV M, 1987, ASTERISQUE, P225
[17]  
Lelong P., 1968, FONCTIONS PLURISOUSH
[18]  
Meo M, 1996, CR ACAD SCI I-MATH, V322, P1141
[19]   SOME PROBLEMS IN PROLONGING CURRENTS IN COMPLEX-ANALYSIS [J].
SIBONY, N .
DUKE MATHEMATICAL JOURNAL, 1985, 52 (01) :157-197
[20]  
SIBONY N, 1999, PANORAMAS SYNTHESES, V8, P97