Regularization of currents and entropy

被引:77
作者
Dinh, TC [1 ]
Sibony, N [1 ]
机构
[1] Univ Paris 11, UMR 8628, F-91405 Orsay, France
来源
ANNALES SCIENTIFIQUES DE L ECOLE NORMALE SUPERIEURE | 2004年 / 37卷 / 06期
关键词
D O I
10.1016/j.ansens.2004.09.002
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let T be a positive closed (p,p)-current on a compact Kahler manifold X. We prove the existence of smooth positive closed (p,p)-forms T-n(+) and T-n(-) such that T-n(+) T-n(-) -> T weakly. Moreover, parallel to T(n)(+/-)parallel to <= c(X) parallel to T parallel to where c(X) > 0 is a constant independent of T. We also extend this result to positive pluriharmonic currents. Then we study the wedge product of positive closed (1, 1)-currents having continuous potential with positive pluriharmonic currents. As an application, we give an estimate for the topological entropy of meromorphic maps on compact Kahler manifolds. (c) 2004 Elsevier SAS.
引用
收藏
页码:959 / 971
页数:13
相关论文
共 23 条
[1]   PLURISUBHARMONIC CURRENTS AND THEIR EXTENSION ACROSS ANALYTIC SUBSETS [J].
ALESSANDRINI, L ;
BASSANELLI, G .
FORUM MATHEMATICUM, 1993, 5 (06) :577-602
[2]   A CUTOFF THEOREM FOR PLURISUBHARMONIC CURRENTS [J].
BASSANELLI, G .
FORUM MATHEMATICUM, 1994, 6 (05) :567-595
[3]   The partial derivative-equation on a positive current [J].
Berndtsson, B ;
Sibony, N .
INVENTIONES MATHEMATICAE, 2002, 147 (02) :371-428
[4]  
Blanchard A., 1956, Ann. Sci. Ecole Norm. Sup., V73, P157
[5]   TOPOLOGICAL ENTROPY FOR NONCOMPACT SETS [J].
BOWEN, R .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1973, 184 (OCT) :125-136
[6]  
Demailly J.-P., 1999, Math. Sci. Res. Inst. Publ., V37, P233
[7]  
DEMAILLY JP, 1993, COMPLEX ANAL GEOMETR, P115
[8]  
Dinh T.-C., 2003, ANN FAC SCI TOULOUSE, VXII, P317
[9]  
DINH TC, 2003, DISTRIBUTION VALEURS
[10]  
DINH TC, IN PRESS ANN MATH