Excitonic effects in a time-dependent density functional theory

被引:62
作者
Igumenshchev, Kirill I. [1 ]
Tretiak, Sergei
Chernyak, Vladimir Y.
机构
[1] Univ Rochester, Dept Chem, Rochester, NY 14627 USA
[2] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA
[3] Los Alamos Natl Lab, Ctr Nonlinear Studies, Los Alamos, NM 87545 USA
[4] Los Alamos Natl Lab, Ctr Integrate Nanotechnol, Los Alamos, NM 87545 USA
关键词
D O I
10.1063/1.2773727
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Excited state properties of one-dimensional molecular materials are dominated by many-body interactions resulting in strongly bound confined excitons. These effects cannot be neglected or treated as a small perturbation and should be appropriately accounted for by electronic structure methodologies. We use adiabatic time-dependent density functional theory to investigate the electronic structure of one-dimensional organic semiconductors, conjugated polymers. Various commonly used functionals are applied to calculate the lowest singlet and triplet state energies and oscillator strengths of the poly(phenylenevinylene) and ladder-type (poly)(para-phenylene) oligomers. Local density approximations and gradient-corrected functionals cannot describe bound excitonic states due to lack of an effective attractive Coulomb interaction between photoexcited electrons and holes. In contrast, hybrid density functionals, which include long-range nonlocal and nonadiabatic corrections in a form of a fraction of Hartree-Fock exchange, are able to reproduce the excitonic effects. The resulting finite exciton sizes are strongly dependent on the amount of the orbital exchange included in the functional. (c) 2007 American Institute of Physics.
引用
收藏
页数:10
相关论文
共 133 条
[1]   Excitations in time-dependent density-functional theory [J].
Appel, H ;
Gross, EKU ;
Burke, K .
PHYSICAL REVIEW LETTERS, 2003, 90 (04) :4
[2]   Exciton dissociation and charge photogeneration in pristine and doped conjugated polymers [J].
Arkhipov, VI ;
Bässler, H .
PHYSICA STATUS SOLIDI A-APPLIED RESEARCH, 2004, 201 (06) :1152-1187
[3]   On-chain fluorenone defect emission from single polyfluorene molecules in the absence of intermolecular interactions [J].
Becker, K ;
Lupton, JM ;
Feldmann, J ;
Nehls, BS ;
Galbrecht, F ;
Gao, DQ ;
Scherf, U .
ADVANCED FUNCTIONAL MATERIALS, 2006, 16 (03) :364-370
[4]   Excited-state electronic structure of conjugated oligomers and polymers:: A quantum-chemical approach to optical phenomena [J].
Brédas, JL ;
Cornil, J ;
Beljonne, D ;
dos Santos, D ;
Shuai, ZG .
ACCOUNTS OF CHEMICAL RESEARCH, 1999, 32 (03) :267-276
[5]   Charge-transfer and energy-transfer processes in π-conjugated oligomers and polymers:: A molecular picture [J].
Brédas, JL ;
Beljonne, D ;
Coropceanu, V ;
Cornil, J .
CHEMICAL REVIEWS, 2004, 104 (11) :4971-5003
[6]   CHEMICAL TUNING OF ELECTROLUMINESCENT COPOLYMERS TO IMPROVE EMISSION EFFICIENCIES AND ALLOW PATTERNING [J].
BURN, PL ;
HOLMES, AB ;
KRAFT, A ;
BRADLEY, DDC ;
BROWN, AR ;
FRIEND, RH ;
GYMER, RW .
NATURE, 1992, 356 (6364) :47-49
[7]   LIGHT-EMITTING-DIODES BASED ON CONJUGATED POLYMERS [J].
BURROUGHES, JH ;
BRADLEY, DDC ;
BROWN, AR ;
MARKS, RN ;
MACKAY, K ;
FRIEND, RH ;
BURN, PL ;
HOLMES, AB .
NATURE, 1990, 347 (6293) :539-541
[8]   Failure of density-functional theory and time-dependent density-functional theory for large extended π systems [J].
Cai, ZL ;
Sendt, K ;
Reimers, JR .
JOURNAL OF CHEMICAL PHYSICS, 2002, 117 (12) :5543-5549
[9]   Interference between extrinsic and intrinsic losses in x-ray absorption fine structure [J].
Campbell, L ;
Hedin, L ;
Rehr, JJ ;
Bardyszewski, W .
PHYSICAL REVIEW B, 2002, 65 (06) :641071-6410713
[10]   Improved quantum efficiency for electroluminescence in semiconducting polymers [J].
Cao, Y ;
Parker, ID ;
Yu, G ;
Zhang, C ;
Heeger, AJ .
NATURE, 1999, 397 (6718) :414-417