Finding measures with given marginals

被引:4
作者
D'Aniello, E
Wright, JDM
机构
[1] Univ Naples 2, Dipartimento Matemat, I-81100 Caserta, Italy
[2] Univ Reading, Dept Math, Anal & Combinator Res Ctr, Reading RG6 6AX, Berks, England
关键词
D O I
10.1093/qjmath/51.4.405
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let (A, X) and (B, Y) be measurable spaces and let V be a Dedekind sigma -complete vector lattice. Let mu (1) and mu (2) be measures defined on A and B, respectively, and taking their values in the positive cone of V. We define sigma -additivity of V-valued measures with respect to the order structure of V. Let A x B be the sigma -field generated by A and B. It is shown here that classical results of Strassen can be generalized to this situation. In particular, when mu (1)(X) = mu (2)(Y), there exists a V-valued sigma -additive measure mu on A x B such that mu (A x Y) = mu (1)(A) and mu (X x B) = mu (2)(B) if mu (1) is sigma -additive, mu (2) is sigma -compact and V satisfies the lattice condition of being weakly sigma -distributive. When V is Dedekind complete and satisfies the stronger property of weak (sigma, infinity)-distributivity then analogous results hold with mu (2) satisfying the weaker property of being completely compact.
引用
收藏
页码:405 / 416
页数:12
相关论文
共 19 条
[1]  
Dixmier J., 1951, Sum. Bras. Math, VII, P151
[2]  
EDWARDS DA, 1978, ANN I FOURIER GRENOB, V28, P53
[3]   A version of Strassen's theorem for vector-valued measures [J].
Hirshberg, A ;
Shortt, RM .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1998, 126 (06) :1669-1671
[4]  
Hirshberg A, 1997, DISTRIBUTIONS WITH GIVEN MARGINALS AND MOMENT PROBLEMS, P173
[5]   DUALITY THEOREMS FOR MARGINAL PROBLEMS [J].
KELLERER, HG .
ZEITSCHRIFT FUR WAHRSCHEINLICHKEITSTHEORIE UND VERWANDTE GEBIETE, 1984, 67 (04) :399-432
[6]  
Kelley J. L., 1959, Pacific J. Math., V9, P1165
[7]  
MARZ M, 1994, PUBL MATH-DEBRECEN, V45, P71
[8]   THE EXISTENCE OF PROBABILITY-MEASURES WITH GIVEN MARGINALS [J].
STRASSEN, V .
ANNALS OF MATHEMATICAL STATISTICS, 1965, 36 (02) :423-439
[9]   MEASURE EXTENSION PROBLEM FOR VECTOR LATTICES [J].
WRIGHT, JDM .
ANNALES DE L INSTITUT FOURIER, 1971, 21 (04) :65-&
[10]  
WRIGHT JDM, 1980, CR ACAD SCI A MATH, V290, P169