Demonstration of Convolution Kernel Operation on Resistive Cross-Point Array

被引:133
作者
Gao, Ligang [1 ]
Chen, Pai-Yu [1 ]
Yu, Shimeng [1 ]
机构
[1] Arizona State Univ, Sch Elect Comp & Energy Engn, Tempe, AZ 85287 USA
基金
美国国家科学基金会;
关键词
Convolution kernel; neuromorphic computing; cross-point array; resistive memory; DEVICES; SYNAPSES;
D O I
10.1109/LED.2016.2573140
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Convolution is the key operation in the convolutional neural network, one of the most popular deep learning algorithms. The implementation of the convolution kernel on the resistive cross-point array is different than the implementation of the matrix-vector multiplication in prior works. In this letter, we propose a dimensional reduction of 2-D kernel matrix into 1-D column vector, i.e., a column of the array, and enable the parallel readout of multiple 2-D kernels simultaneously. As a proof-of-concept demonstration, we use the Prewitt kernels to detect both horizontal and vertical edges of the 20 x 20 pixels of black-and-white MNIST handwritten digits. The experiments were performed on the fabricated 12 x 12 resistive cross-point array based on the Pt/HfOx/TiN structure. The experimental results of the Prewitt kernel operation perfectly matches the simulation results, indicating the feasibility of the proposed implementation methodology of the convolution kernel on resistive cross-point array.
引用
收藏
页码:870 / 873
页数:4
相关论文
共 18 条
[1]  
Eryilmaz SB, 2013, 2013 IEEE INTERNATIONAL ELECTRON DEVICES MEETING (IEDM)
[2]   Low-Temperature Characteristics of HfOx-Based Resistive Random Access Memory [J].
Fang, Runchen ;
Chen, Wenhao ;
Gao, Ligang ;
Yu, Weijie ;
Yu, Shimeng .
IEEE ELECTRON DEVICE LETTERS, 2015, 36 (06) :567-569
[3]   Ultra-Low-Energy Three-Dimensional Oxide-Based Electronic Synapses for Implementation of Robust High-Accuracy Neuromorphic Computation Systems [J].
Gao, Bin ;
Bi, Yingjie ;
Chen, Hong-Yu ;
Liu, Rui ;
Huang, Peng ;
Chen, Bing ;
Liu, Lifeng ;
Liu, Xiaoyan ;
Yu, Shimeng ;
Wong, H. -S. Philip ;
Kang, Jinfeng .
ACS NANO, 2014, 8 (07) :6998-7004
[4]   Programming Protocol Optimization for Analog Weight Tuning in Resistive Memories [J].
Gao, Ligang ;
Chen, Pai-Yu ;
Yu, Shimeng .
IEEE ELECTRON DEVICE LETTERS, 2015, 36 (11) :1157-1159
[5]   Fully parallel write/read in resistive synaptic array for accelerating on-chip learning [J].
Gao, Ligang ;
Wang, I-Ting ;
Chen, Pai-Yu ;
Vrudhula, Sarma ;
Seo, Jae-Sun ;
Cao, Yu ;
Hou, Tuo-Hung ;
Yu, Shimeng .
NANOTECHNOLOGY, 2015, 26 (45)
[6]   HfO2-Based OxRAM Devices as Synapses for Convolutional Neural Networks [J].
Garbin, Daniele ;
Vianello, Elisa ;
Bichler, Olivier ;
Rafhay, Quentin ;
Gamrat, Christian ;
Ghibaudo, Gerard ;
DeSalvo, Barbara ;
Perniola, Luca .
IEEE TRANSACTIONS ON ELECTRON DEVICES, 2015, 62 (08) :2494-2501
[7]   Memristor Crossbar-Based Neuromorphic Computing System: A Case Study [J].
Hu, Miao ;
Li, Hai ;
Chen, Yiran ;
Wu, Qing ;
Rose, Garrett S. ;
Linderman, Richard W. .
IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2014, 25 (10) :1864-1878
[8]   A Functional Hybrid Memristor Crossbar-Array/CMOS System for Data Storage and Neuromorphic Applications [J].
Kim, Kuk-Hwan ;
Gaba, Siddharth ;
Wheeler, Dana ;
Cruz-Albrecht, Jose M. ;
Hussain, Tahir ;
Srinivasa, Narayan ;
Lu, Wei .
NANO LETTERS, 2012, 12 (01) :389-395
[9]   ImageNet Classification with Deep Convolutional Neural Networks [J].
Krizhevsky, Alex ;
Sutskever, Ilya ;
Hinton, Geoffrey E. .
COMMUNICATIONS OF THE ACM, 2017, 60 (06) :84-90
[10]   Deep learning [J].
LeCun, Yann ;
Bengio, Yoshua ;
Hinton, Geoffrey .
NATURE, 2015, 521 (7553) :436-444