Using Bayesian networks to analyze expression data

被引:1902
作者
Friedman, N [1 ]
Linial, M
Nachman, I
Pe'er, D
机构
[1] Hebrew Univ Jerusalem, Sch Comp Sci & Engn, IL-91904 Jerusalem, Israel
[2] Hebrew Univ Jerusalem, Inst Life Sci, IL-91904 Jerusalem, Israel
[3] Hebrew Univ Jerusalem, Ctr Neural Computat, IL-91904 Jerusalem, Israel
关键词
gene expression; microarrays; Bayesian methods;
D O I
10.1089/106652700750050961
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
DNA hybridization arrays simultaneously measure the expression level for thousands of genes. These measurements provide a "snapshot" of transcription levels within the cell. A major challenge in computational biology is to uncover, from such measurements, gene/protein interactions and key biological features of cellular systems. In this paper, we propose a new framework for discovering interactions between genes based on multiple expression measurements. This framework builds on the use of Bayesian networks for representing statistical dependencies. A Bayesian network is a graph-based model of joint multivariate probability distributions that captures properties of conditional independence between variables. Such models are attractive for their ability to describe complex stochastic processes and because they provide a clear methodology for learning from (noisy) observations. We start by showing how Bayesian networks can describe interactions between genes, We then describe a method for recovering gene interactions from microarray data using tools for learning Bayesian networks. Finally, we demonstrate this method on the S. cerevisiae cell-cycle measurements of Spellman et al, (1998).
引用
收藏
页码:601 / 620
页数:20
相关论文
共 55 条
  • [1] AKUTSU S, 1998, P 9 ANN ACM SIAM S D
  • [2] Broad patterns of gene expression revealed by clustering analysis of tumor and normal colon tissues probed by oligonucleotide arrays
    Alon, U
    Barkai, N
    Notterman, DA
    Gish, K
    Ybarra, S
    Mack, D
    Levine, AJ
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1999, 96 (12) : 6745 - 6750
  • [3] Gapped BLAST and PSI-BLAST: a new generation of protein database search programs
    Altschul, SF
    Madden, TL
    Schaffer, AA
    Zhang, JH
    Zhang, Z
    Miller, W
    Lipman, DJ
    [J]. NUCLEIC ACIDS RESEARCH, 1997, 25 (17) : 3389 - 3402
  • [4] [Anonymous], 1998, Learning in Graphical Models, chapter A tutorial on learning with Bayesian networks
  • [5] Clustering gene expression patterns
    Ben-Dor, A
    Shamir, R
    Yakhini, Z
    [J]. JOURNAL OF COMPUTATIONAL BIOLOGY, 1999, 6 (3-4) : 281 - 297
  • [6] Blumenthal T, 1998, BIOESSAYS, V20, P480, DOI 10.1002/(SICI)1521-1878(199806)20:6&lt
  • [7] 480::AID-BIES6&gt
  • [8] 3.0.CO
  • [9] 2-Q
  • [10] Buntine W., 1991, P 7 C UNC ART INT, P52