The homotopy types of SU(n)-gauge groups over S6

被引:5
作者
Mohammadi, Sajjad [1 ]
Asadi-Golmankhaneh, Mohammad Ali [2 ]
机构
[1] Urmia Univ, Coll Sci, Dept Math, POB 5756151818, Orumiyeh, Iran
[2] Urmia Univ, Dept Math, POB 165, Orumiyeh, Iran
关键词
Gauge group; Homotopy type; Lie group; Homotopy equivalence; SAMELSON PRODUCTS;
D O I
10.1016/j.topol.2019.106952
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let n >= 3, denote by P-n,P-k the principal SU(n)-bundles over S-6 with Chern class c(3)(P-n,P-k) = 2k and G(k) be the gauge group of P-n,P-k classified by k epsilon', where epsilon' is a generator of pi(6)(B(SU(n)) congruent to Z. In this article we show that if there is a homotopy equivalence G(k) similar or equal to G(k), then ((n - 1)n(n + 1)(n + 2), k) = ((n - 1)n(n + 1)(n+ 2), k'). (C) 2019 Elsevier B.V. All rights reserved.
引用
收藏
页数:8
相关论文
共 15 条
[1]   THE YANG-MILLS EQUATIONS OVER RIEMANN SURFACES [J].
ATIYAH, MF ;
BOTT, R .
PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1983, 308 (1505) :523-615
[2]   Counting homotopy types of gauge groups [J].
Crabb, MC ;
Sutherland, WA .
PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 2000, 81 :747-768
[3]   The homotopy types of Sp(3)-gauge groups [J].
Cutler, Tyrone .
TOPOLOGY AND ITS APPLICATIONS, 2018, 236 :44-58
[4]   Unstable K1-group and homotopy type of certain gauge groups [J].
Hamanaka, H ;
Kono, A .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2006, 136 :149-155
[5]   On [X, U(n)] when dim X is 2n [J].
Hamanaka, H ;
Kono, A .
JOURNAL OF MATHEMATICS OF KYOTO UNIVERSITY, 2003, 43 (02) :333-348
[6]   Samelson products in Sp(2) [J].
Hamanaka, Hiroaki ;
Kaji, Shizuo ;
Kono, Akira .
TOPOLOGY AND ITS APPLICATIONS, 2008, 155 (11) :1207-1212
[7]   Homotopy type of gauge groups of SU(3)-bundles over S6 [J].
Hamanaka, Hiroaki ;
Kono, Akira .
TOPOLOGY AND ITS APPLICATIONS, 2007, 154 (07) :1377-1380
[8]   Samelson products of SO(3) and applications [J].
Kamiyama, Yasuhiko ;
Kishimoto, Daisuke ;
Kono, Akira ;
Tsukuda, Shuichi .
GLASGOW MATHEMATICAL JOURNAL, 2007, 49 :405-409
[9]   The homotopy types of G2-gauge groups [J].
Kishimoto, Daisuke ;
Theriault, Stephen ;
Tsutaya, Mitsunobu .
TOPOLOGY AND ITS APPLICATIONS, 2017, 228 :92-107
[10]   A NOTE ON THE HOMOTOPY TYPE OF CERTAIN GAUGE GROUPS [J].
KONO, A .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 1991, 117 :295-297