High-precision quantum algorithms for partial differential equations

被引:95
作者
Childs, Andrew M. [1 ,2 ,3 ]
Liu, Jin-Peng [1 ,2 ,4 ]
Ostrander, Aaron [1 ,2 ,5 ]
机构
[1] Univ Maryland, Joint Ctr Quantum Informat & Comp Sci, College Pk, MD 20742 USA
[2] Univ Maryland, Inst Adv Comp Studies, College Pk, MD 20742 USA
[3] Univ Maryland, Dept Comp Sci, College Pk, MD 20742 USA
[4] Univ Maryland, Dept Math, College Pk, MD 20742 USA
[5] Univ Maryland, Dept Phys, College Pk, MD 20742 USA
基金
美国国家科学基金会;
关键词
SPARSE GRID METHODS; SYSTEMS;
D O I
10.22331/q-2021-11-10-574
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Quantum computers can produce a quantum encoding of the solution of a system of differential equations exponentially faster than a classical algorithm can produce an explicit description. However, while high-precision quantum algorithms for linear ordinary differential equations are well established, the best previous quantum algorithms for linear partial differential equations (PDEs) have complexity poly(1/epsilon), where epsilon is the error tolerance. By developing quantum algorithms based on adaptive-order finite difference methods and spectral methods, we improve the complexity of quantum algorithms for linear PDEs to be poly(d, log( 1/epsilon)), where d is the spatial dimension. Our algorithms apply high-precision quantum linear system algorithms to systems whose condition numbers and approximation errors we bound. We develop a finite difference algorithm for the Poisson equation and a spectral algorithm for more general second-order elliptic equations.
引用
收藏
页数:40
相关论文
共 40 条
[1]   Variable time amplitude amplification and quantum algorithms for linear algebra problems [J].
Ambainis, Andris .
29TH INTERNATIONAL SYMPOSIUM ON THEORETICAL ASPECTS OF COMPUTER SCIENCE, (STACS 2012), 2012, 14 :636-647
[2]  
[Anonymous], 1999, INT S APPL ALG ALG A, DOI DOI 10.1007/3-540-46796-3
[3]  
[Anonymous], 2020, QUANTUM INF PROCESS, DOI DOI 10.1007/S11128-020-02669-7
[4]  
[Anonymous], 2017, FORUM MATH SIGMA, DOI DOI 10.1145/2591796.2591854
[5]  
[Anonymous], 1991, NOTE NUM FL
[6]  
BABUSKA I, 1987, RAIRO-MATH MODEL NUM, V21, P199
[7]  
Bellman R., 1957, DYNAMIC PROGRAMMING, V1st
[8]   Simulating Hamiltonian Dynamics with a Truncated Taylor Series [J].
Berry, Dominic W. ;
Childs, Andrew M. ;
Cleve, Richard ;
Kothari, Robin ;
Somma, Rolando D. .
PHYSICAL REVIEW LETTERS, 2015, 114 (09)
[9]  
Bungartz HJ, 2004, ACT NUMERIC, V13, P147, DOI 10.1017/S0962492904000182
[10]   Quantum algorithm and circuit design solving the Poisson equation [J].
Cao, Yudong ;
Papageorgiou, Anargyros ;
Petras, Iasonas ;
Traub, Joseph ;
Kais, Sabre .
NEW JOURNAL OF PHYSICS, 2013, 15