Up-wind difference approximation and singularity formation for a slow erosion model

被引:2
作者
Coclite, Giuseppe Maria [1 ]
Gargano, Francesco [2 ]
Sciacca, Vincenzo [3 ]
机构
[1] Politecn Bari, Dipartimento Meccan Matemat & Management, Via Orabona 4, I-70125 Bari, Italy
[2] Univ Palermo, Dipartimento Ingn, Viale Sci,Ed 8, I-90128 Palermo, Italy
[3] Univ Palermo, Dipartimento Matemat & Informat, Via Archirafi 34, I-90123 Palermo, Italy
来源
ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE | 2020年 / 54卷 / 02期
关键词
Entropy solutions; up-wind scheme; Engquist-Osher scheme; spectral analysis; complex singularities; granular flows; COMPLEX SINGULARITIES; CONSERVATION-LAWS; WELL-POSEDNESS; VORTEX-SHEET; CAMASSA-HOLM; EULER FLOW; CONVERGENCE; TRACKING; EQUATION; SCHEMES;
D O I
10.1051/m2an/2019068
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider a model for a granular flow in the slow erosion limit introduced in [31]. We propose an up-wind numerical scheme for this problem and show that the approximate solutions generated by the scheme converge to the unique entropy solution. Numerical examples are also presented showing the reliability of the scheme. We study also the finite time singularity formation for the model with the singularity tracking method, and we characterize the singularities as shocks in the solution.
引用
收藏
页码:465 / 492
页数:28
相关论文
共 44 条
[1]   AN INTEGRO-DIFFERENTIAL CONSERVATION LAW ARISING IN A MODEL OF GRANULAR FLOW [J].
Amadori, Debora ;
Shen, Wen .
JOURNAL OF HYPERBOLIC DIFFERENTIAL EQUATIONS, 2012, 9 (01) :105-131
[2]   FRONT TRACKING APPROXIMATIONS FOR SLOW EROSION [J].
Amadori, Debora ;
Shen, Weh .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2012, 32 (05) :1481-1502
[3]  
[Anonymous], FUNCTION COMPLEX VAR
[4]   SINGULARITY FORMATION DURING RAYLEIGH-TAYLOR INSTABILITY [J].
BAKER, G ;
CAFLISCH, RE ;
SIEGEL, M .
JOURNAL OF FLUID MECHANICS, 1993, 252 :51-78
[5]   Regularized Euler-α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha $$\end{document} motion of an infinite array of vortex sheets [J].
R. E. Caflisch ;
F. Gargano ;
M. Sammartino ;
V. Sciacca .
Bollettino dell'Unione Matematica Italiana, 2017, 10 (1) :113-141
[6]   SINGULARITY FORMATION FOR COMPLEX SOLUTIONS OF THE 3D INCOMPRESSIBLE EULER EQUATIONS [J].
CAFLISCH, RE .
PHYSICA D-NONLINEAR PHENOMENA, 1993, 67 (1-3) :1-18
[7]  
Caflisch RE, 2015, RIV MAT UNIV PARMA, V6, P69
[8]  
Canuto C., 2007, SPECTRAL METHODS SCI
[9]   HIGH-ORDER NUMERICAL SCHEMES FOR ONE-DIMENSIONAL NONLOCAL CONSERVATION LAWS [J].
Chalons, Christophe ;
Goatin, Paola ;
Villada, Luis M. .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2018, 40 (01) :A288-A305
[10]   Evolution of complex singularities in Kida-Pelz and Taylor-Green inviscid flows [J].
Cichowlas, C ;
Brachet, ME .
FLUID DYNAMICS RESEARCH, 2005, 36 (4-6) :239-248