On existence of homoclinic orbits for some types of autonomous quadratic systems of differential equations

被引:12
作者
Belozyorov, Vasiliy Ye. [1 ]
机构
[1] Dnepropetrovsk Natl Univ, Phys & Tech Dept, UA-49050 Dnepropetrovsk, Ukraine
关键词
System of ordinary quadratic differential equations; Linear transformation; Boundedness; Negative definiteness; Homoclinic orbit; Chaotic attractor; CHAOTIC ATTRACTOR; LORENZ SYSTEM; BIFURCATION; FEEDBACK; DYNAMICS;
D O I
10.1016/j.amc.2010.11.010
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The new existence conditions of homoclinic orbits for the system of ordinary quadratic differential equations are founded. Further, the realization of these conditions together with the Shilnikov Homoclinic Theorem guarantees the existence of a chaotic attractor at 3D autonomous quadratic system. Examples of the chaotic attractors are given. (C) 2010 Elsevier Inc. All rights reserved.
引用
收藏
页码:4582 / 4595
页数:14
相关论文
共 26 条
[1]  
[Anonymous], 1998, ELEMENTS APPL BIFURC, DOI DOI 10.1007/B98848
[2]  
Belozyorov V. Y., 2002, International Journal of Applied Mathematics and Computer Science, V12, P493
[3]   Periodic orbits for a class of reversible quadratic vector field on R3 [J].
Buzzi, Claudio A. ;
Llibre, Jaume ;
Medrado, Joao C. .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2007, 335 (02) :1335-1346
[4]   A single three-wing or four-wing chaotic attractor generated from a three-dimensional smooth quadratic autonomous system [J].
Chen, Zengqiang ;
Yang, Yong ;
Yuan, Zhuzhi .
CHAOS SOLITONS & FRACTALS, 2008, 38 (04) :1187-1196
[5]  
GUCKENHEIMER J, 1986, DYNAMICAL SYSTEMS BI
[6]   Dynamics of the Lorenz-Robbins system with control [J].
Huang, Debin ;
Zhang, Lizhen .
PHYSICA D-NONLINEAR PHENOMENA, 2006, 218 (02) :131-138
[7]  
Khalil H., 2002, Nonlinear Systems, V3
[8]   On stability and bifurcation of Chen's system [J].
Li, TC ;
Chen, GR ;
Tang, Y .
CHAOS SOLITONS & FRACTALS, 2004, 19 (05) :1269-1282
[9]   Nonlinear dynamics and circuit realization of a new chaotic flow: A variant of Lorenz, Chen and Lu [J].
Li, Xian-Feng ;
Chlouverakis, Konstantinos E. ;
Xu, Dong-Liang .
NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2009, 10 (04) :2357-2368
[10]   Existence of chaos in evolution equations [J].
Li, YGC .
MATHEMATICAL AND COMPUTER MODELLING, 2002, 36 (11-13) :1211-1219