Electrochemical Modeling and Performance of a Lithium- and Manganese-Rich Layered Transition-Metal Oxide Positive Electrode

被引:45
作者
Dees, Dennis W. [1 ]
Abraham, Daniel P. [1 ]
Lu, Wenquan [1 ]
Gallagher, Kevin G. [1 ]
Bettge, Martin [1 ]
Jansen, Andrew N. [1 ]
机构
[1] Argonne Natl Lab, Chem Sci & Engn Div, Argonne, IL 60439 USA
关键词
ION BATTERIES; POROUS-ELECTRODE; CATHODE PERFORMANCE; COMPOSITE CATHODES; INSERTION CELL; VOLTAGE FADE; IMPEDANCE; OPTIMIZATION; CONDUCTIVITY; HYSTERESIS;
D O I
10.1149/2.0231504jes
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
The impedance of a lithium- and manganese-rich layered transition-metal oxide (MR-NMC) positive electrode, specifically Li1.2Ni0.15Mn0.55Co0.1O2, is compared to two other transition-metal layered oxide materials, specifically LiNi0.8Co0.15Al0.05O2 (NCA) and Li-1.05(Ni1/3Co1/3Mn1/3)(0.95)O-2 (NMC). A more detailed electrochemical impedance spectroscopy (EIS) study is conducted on the LMR-NMC electrode, which includes a range of states-of-charge (SOCs) for both current directions (i.e. charge and discharge) and two relaxation times (i.e. hours and one hundred hours) before the EIS sweep. The LMR-NMC electrode EIS studies are supported by half-cell constant current and galvanostatic intermittent titration technique (GITT) studies. Two types of electrochemical models are utilized to examine the results. The first type is a lithium ion cell electrochemical model for intercalation active material electrodes that includes a complex active material/electrolyte interfacial structure. The other is a lithium ion half-cell electrochemical model that focuses on the unique composite structure of the bulk LMR-NMC materials. (C) 2015 The Electrochemical Society. All rights reserved.
引用
收藏
页码:A559 / A572
页数:14
相关论文
共 44 条
[1]   Modeling the impedance versus voltage characteristics of LiNi0.8Co0.15Al0.05O2 [J].
Abraham, D. P. ;
Kawauchi, S. ;
Dees, D. W. .
ELECTROCHIMICA ACTA, 2008, 53 (05) :2121-2129
[2]   Application of a lithium-tin reference electrode to determine electrode contributions to impedance rise in high-power lithium-ion cells [J].
Abraham, DP ;
Poppen, SD ;
Jansen, AN ;
Liu, J ;
Dees, DW .
ELECTROCHIMICA ACTA, 2004, 49 (26) :4763-4775
[3]  
[Anonymous], NATURE COMMUNICATION
[4]   Effect of interface modifications on voltage fade in 0.5Li2MnO3•0.5LiNi0.375Mn0.375CO0.25O2 cathode materials [J].
Bloom, Ira ;
Trahey, Lynn ;
Abouimrane, Ali ;
Belharouak, Ilias ;
Zhang, Xiaofeng ;
Wu, Qingliu ;
Lu, Wenquan ;
Abraham, Daniel P. ;
Bettge, Martin ;
Elam, Jeffrey W. ;
Meng, Xiangbo ;
Burrell, Anthony K. ;
Ban, Chunmei ;
Tenent, Robert ;
Nanda, Jagjit ;
Dudney, Nancy .
JOURNAL OF POWER SOURCES, 2014, 249 :509-514
[5]   Selection of conductive additives in Li-ion battery cathodes - A numerical study [J].
Chen, Y.-H. ;
Wang, C.-W. ;
Liu, G. ;
Song, X.-Y. ;
Battaglia, V. S. ;
Sastry, A. M. .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2007, 154 (10) :A978-A986
[6]   Porous cathode optimization for lithium cells: Ionic and electronic conductivity, capacity, and selection of materials [J].
Chen, Y. -H. ;
Wang, C. -W. ;
Zhang, X. ;
Sastry, A. M. .
JOURNAL OF POWER SOURCES, 2010, 195 (09) :2851-2862
[7]   Li2MnO3-based composite cathodes for lithium batteries: A novel synthesis approach and new structures [J].
Croy, J. R. ;
Kang, S. -H. ;
Balasubramanian, M. ;
Thackeray, M. M. .
ELECTROCHEMISTRY COMMUNICATIONS, 2011, 13 (10) :1063-1066
[8]  
Croy J. R., 2015, CHEM MAT IN PRESS
[9]   Quantifying Hysteresis and Voltage Fade in xLi2MnO3•(1-x)LiMn0.5Ni0.5O2 Electrodes as a Function of Li2MnO3 Content [J].
Croy, Jason R. ;
Gallagher, Kevin G. ;
Balasubramanian, Mahalingam ;
Long, Brandon R. ;
Thackeray, Michael M. .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2014, 161 (03) :A318-A325
[10]   Examining Hysteresis in Composite xLi2MnO3•(1-x)LiMO2 Cathode Structures [J].
Croy, Jason R. ;
Gallagher, Kevin G. ;
Balasubramanian, Mahalingam ;
Chen, Zonghai ;
Ren, Yang ;
Kim, Donghan ;
Kang, Sun-Ho ;
Dees, Dennis W. ;
Thackeray, Michael M. .
JOURNAL OF PHYSICAL CHEMISTRY C, 2013, 117 (13) :6525-6536